www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Eulersche Zahl
Eulersche Zahl < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eulersche Zahl: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 17:05 Do 18.11.2010
Autor: Michael2010

Aufgabe
[mm] a_{n}=(1+1/n^{2})^{n} [/mm] Untersuchen Sie auf Konvergenz und bestimmen Sie gegebenenfalls den Grenzwert.

Hallo liebe Community,
bis jetzt sind wir etwa soweit gekommen:
[mm] (1+1/n^{2})^{n} [/mm] = [mm] (1+1/n)^{n} [/mm] * [mm] (\bruch{1+1/n^{2}}{1+1/n})^{n} [/mm]

Die Lösung wäre denken wir den grenzwert als ein vielfaches von e auszudrücken. kommen hier aber leider nicht weiter =(

lg
Michael

        
Bezug
Eulersche Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 Do 18.11.2010
Autor: schachuzipus

Hallo Michael2010,

> [mm]a_{n}=(1+1/n^{2})^{n}[/mm] Untersuchen Sie auf Konvergenz und
> bestimmen Sie gegebenenfalls den Grenzwert.
> Hallo liebe Community,
> bis jetzt sind wir etwa soweit gekommen:
> [mm](1+1/n^{2})^{n}[/mm] = [mm](1+1/n)^{n}[/mm] *  [mm](\bruch{1+1/n^{2}}{1+1/n})^{n}[/mm]
>
> Die Lösung wäre denken wir den grenzwert als ein
> vielfaches von e auszudrücken.

Nee, das wird nicht klappen.


Benutzt das Sandwich-Lemma und quetscht die gegebene Folge zwischen 2 Folgen ein, die beide gegen 1 streben.

Alternativ schreibt [mm]\left(1+\frac{1}{n^2}\right)^n=\left[\left(1+\frac{1}{n^2}\right)^{n^2}\right]^{\frac{1}{n}}[/mm]

> kommen hier aber leider
> nicht weiter =(
>
> lg
> Michael

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]