Euler-Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:44 Sa 06.10.2012 | Autor: | Axiom96 |
Aufgabe | Man bestimme [mm] \lim_{n\to\infty}(1-\frac{1}{n^2})^n. [/mm] |
Hallo,
ich würde das so lösen: Ich berechne [mm] \lim_{n\to\infty}(1-\frac{1}{n})^n, [/mm] dazu substituiere ich $n:=-m$, dann gilt:
[mm] \lim_{n\to\infty}(1-\frac{1}{n})^n=\lim_{m\to\infty}(1+\frac{1}{m})^{-m}=e^{-1}. [/mm] Dann folgt mit [mm] (1-\frac{1}{n})(1+\frac{1}{n})=1-\frac{1}{n^2}: \lim_{n\to\infty}(1-\frac{1}{n^2})^n=1.
[/mm]
Allerdings sind negative Exponenten noch nicht eingeführt, ich bin mir also nicht sicher, ob das so überhaupt "erlaubt", das heißt richtig, wäre. Denn auch von der Schule her kenne ich negative Exponenten noch nicht. Außerdem kommt danach noch zusätzlich die Aufgabe, [mm] \lim_{n\to\infty}(1-\frac{1}{n})^n [/mm] zu bestimmen. Ich frage mich also, ob es einen anderen, im Sinne des Aufgabenstellers "besseren" Lösungsweg gibt.
Viele Grüße
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:10 Sa 06.10.2012 | Autor: | abakus |
> Man bestimme [mm]\lim_{n\to\infty}(1-\frac{1}{n^2})^n.[/mm]
> Hallo,
>
> ich würde das so lösen: Ich berechne
> [mm]\lim_{n\to\infty}(1-\frac{1}{n})^n,[/mm] dazu substituiere ich
> [mm]n:=-m[/mm], dann gilt:
>
> [mm]\lim_{n\to\infty}(1-\frac{1}{n})^n=\lim_{m\to\infty}(1+\frac{1}{m})^{-m}=e^{-1}.[/mm]
Hallo,
es gilt [mm]\lim_{n\to\infty}(1-\frac{1}{n^2})^{n^2}=e^{-1}.[/mm]
Du hast aber nur den Term [mm](1-\frac{1}{n^2})^{n}[/mm], der sich schreiben lässt als [mm]((1-\frac{1}{n^2})^{n^2})^\frac1n=\wurzel[n]{(1-\frac{1}{n^2})^{n^2}}[/mm]. Damit sollte dein Ergebnis 1 korrekt sein.
> Dann folgt mit
> [mm](1-\frac{1}{n})(1+\frac{1}{n})=1-\frac{1}{n^2}: \lim_{n\to\infty}(1-\frac{1}{n^2})^n=1.[/mm]
>
> Allerdings sind negative Exponenten noch nicht eingeführt,
> ich bin mir also nicht sicher, ob das so überhaupt
> "erlaubt", das heißt richtig, wäre. Denn auch von der
> Schule her kenne ich negative Exponenten noch nicht.
> Außerdem kommt danach noch zusätzlich die Aufgabe,
> [mm]\lim_{n\to\infty}(1-\frac{1}{n})^n[/mm] zu bestimmen. Ich frage
Dass diese Aufgabe erst danach kommt, ist seltsam. Du hast ja vorher schon berechnet, dass das 1/e ist.
Gruß Abakus
> mich also, ob es einen anderen, im Sinne des
> Aufgabenstellers "besseren" Lösungsweg gibt.
>
> Viele Grüße
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:51 So 07.10.2012 | Autor: | hippias |
Dass der Grenzwert $=1$ ist, folgt auch ganz elementar aus der Bernoulli-Ungleichung; mit Hilfe Deiner Faktorisierung macht dann auch die zweite Aufgabe besser Sinn.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:23 So 07.10.2012 | Autor: | Axiom96 |
Danke, nach so etwas habe ich gesucht.
Viele Grüße
|
|
|
|