www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Erzeugendensystem
Erzeugendensystem < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erzeugendensystem: Lösung einer Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:26 Mo 23.01.2012
Autor: Fenix

Aufgabe
Gegeben ist die Matrix:

[mm] A=\pmat{ 1 & -2 & 1 \\ 2 & -4 & 4 \\ -1 & 2 & 3} [/mm]

a) Bestimmen sie Rang und Determinante der Koeffizientenmatrix.
b) Bilden die Spaltenvektoren von A ein Erzeugendensystem des [mm] \IR³? [/mm]

Hi,

es geht um Aufgabe b der Probeklausur.
Ich verstehe immer noch nicht ganz, wie ich prüfen kann, ob ein Erzeugendensystem vorliegt.

Ich würde jetzt mittels Gauß die Matrix auf Zeilenstufenform bringen und anschließend die Determinante berechnen.

Wenn diese != 0 ist, wäre die Matrix invertierbar und somit wären die Zeilen - und Spaltenvektoren linear unabhängig.

Aber reicht dieses Kriterium aus, um festzustellen, ob es sich tatsächlich um ein Erzeugendensystem handelt ?

Auf jeden Fall muss es ohne viel Rechnen ersichtlich sein, da die Aufgabe b) nur mit einem Punkt bepunktet ist.

Für eure Hilfe wäre ich wirklich sehr dankbar.

Lg, Fenix.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Erzeugendensystem: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 Mo 23.01.2012
Autor: Gonozal_IX

Hiho,


> Wenn diese != 0 ist, wäre die Matrix invertierbar und
> somit wären die Zeilen - und Spaltenvektoren linear
> unabhängig.

[ok]
  

> Aber reicht dieses Kriterium aus, um festzustellen, ob es
> sich tatsächlich um ein Erzeugendensystem handelt ?

Wieviel lineare unabhängige Vektoren  hättest du denn dann?
Wieviele brauchst du um ein Erzeugendensystem für den [mm] \IR^3 [/mm] zu haben?

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]