Erwartungswert und Dichte < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei $ Y $ gleichverteilt auf dem Einheitskreis [mm] B_{0,1} [/mm] (also der Kreis mit Mittelpunkt 0 und Radius 1) und bezeichne mit $ X $ den Abstandvon $ Y $ zum Nullpunkt.
(a) Sei $ k [mm] \in \IN [/mm] $. Berechnen Sie den Erwartungswert [mm] E(X^k) [/mm] mittels der Dichte von X.
(b) Berechnen Sie den Erwartungswert [mm] E(X^2) [/mm] mittels der Dichte von [mm] X^2. [/mm] |
Hi MatheRaum,
hallo Freunde der Stochastik
Aus einer anderen Übung wissen wir, dass die Dichte von $ X $ folgendermaßen lautet: f(x) = 2*x
Und die Verteilungsfunktion sieht so aus:
P(d($ Y $,0) [mm] \le [/mm] x) = [mm] \begin{cases} P(\emptyset)=0 & x < 0 \\ P(||y||_2 \le x) = x^2 & x \in [0,1] \\ P(||y||_2 > x) = 1 & x > 1 \end{cases}
[/mm]
(Hier bin ich mir insb. beim letzten Fall nicht sicher, ob ich da nicht falsch abgeschrieben habe. Kann das bitte jmd überprüfen?)
Ausgehen von diesen Annahmen, habe ich jetzt Folgendes gerechnet:
a) $ [mm] E(X^k)=\integral_{0}^{1}{x*(2*x)^k dx}=2^k \integral_{0}^{1}{x^{k+1} dx}=2^k \bruch{x^{k+2}}{k+2}|^1_0 [/mm] = [mm] 2^k \bruch{1}{k+2}$
[/mm]
b) Hier habe ich nun für die Dichte von $ [mm] X^2 [/mm] $ nun $ [mm] (2x)^2 [/mm] = [mm] 4x^2 [/mm] $ genommen.
$ [mm] E(X^2)=\integral_{0}^{1}{x*(4*x^2) dx}=4\integral_{0}^{1}{x^3 dx}=4 \cdot \bruch{1}{4}x^4|^1_0=4 \cdot \bruch{1}{4}=1 [/mm] $
Bin für jede Hilfe dankbar
Ciao
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:11 Do 01.12.2011 | Autor: | luis52 |
Moin
>
> Aus einer anderen Übung wissen wir, dass die Dichte von [mm]X[/mm]
> folgendermaßen lautet: f(x) = 2*x
> Und die Verteilungsfunktion sieht so aus:
>
> P(d([mm] Y [/mm],0) [mm]\le[/mm] x) = [mm]\begin{cases} P(\emptyset)=0 & x < 0 \\ P(||y||_2 \le x) = x^2 & x \in [0,1] \\ P(||y||_2 > x) = 1 & x > 1 \end{cases}[/mm]
>
> (Hier bin ich mir insb. beim letzten Fall nicht sicher, ob
> ich da nicht falsch abgeschrieben habe. Kann das bitte jmd
> überprüfen?)
>
> Ausgehen von diesen Annahmen, habe ich jetzt Folgendes
> gerechnet:
>
> a) [mm]E(X^k)=\integral_{0}^{1}{x*(2*x)^k dx}=2^k \integral_{0}^{1}{x^{k+1} dx}=2^k \bruch{x^{k+2}}{k+2}|^1_0 = 2^k \bruch{1}{k+2}[/mm]
[mm] $\operatorname{E}[X^k]=\integral_{0}^{1}x^kf(x)\,dx$
[/mm]
>
> b) Hier habe ich nun für die Dichte von [mm]X^2[/mm] nun [mm](2x)^2 = 4x^2[/mm]
> genommen.
> [mm]E(X^2)=\integral_{0}^{1}{x*(4*x^2) dx}=4\integral_{0}^{1}{x^3 dx}=4 \cdot \bruch{1}{4}x^4|^1_0=4 \cdot \bruch{1}{4}=1[/mm]
Die Dichte $g_$ von [mm] $X^2$ [/mm] *kann* nicht [mm] $4x^2$ [/mm] sein, denn [mm] $\integral_{0}^{1}4*x^2\,dx=4/3\ne1$. [/mm]
Betrachte die Verteilungsfunktion von [mm] $X^2$, [/mm] also [mm] $G(z)=P(X^2\le z)=P(X\le \sqrt{z})$ [/mm] fuer $0<z<1$, und bestimme $g(z)=G'(z)_$.
vg Luis
|
|
|
|
|
Ersteinmal Danke für die Antwort luis52 und Entschuldigung,
dass ich so lange nicht geantwortet habe.
So habe ich die b) nun gelöst:
Sei F die Verteilungsfunktion von [mm] $X^2$
[/mm]
[mm] $F(z)=P({\omega \in B_{0,1}: ||X(\omega)||^2 \le z})=P({\omega \in B_{0,1}: ||X(\omega)|| \le \wurzel(z)})=P({\omega \in B_{0,1}: X(\omega) \in B_{0,1}})=\bruch{\pi \cdot (\wurzel(2))^2}{\pi}=z$
[/mm]
Nun muss für die DIchte f(x) gelten: [mm] \integral_{0}^{z}{f(x) dx}=z
[/mm]
[mm] \Rightarrow [/mm] f(x)=1
Die DIchte von [mm] $X^2$ [/mm] ist also [mm] $f(x)=1\cdot 1_{[0,1]}(x)$ (1_{[0,1]}(x) [/mm] ist die Indiaktorfunktion von 0 bis 1)
$ [mm] \Rightarrow E(X^2) =\integral_{-\infty}^{\infty}{x \cdot f(x) dx}= \integral_{0}^{1}{x dx}=\bruch{x^2}{2} |_0^1 [/mm] = [mm] \bruch{1}{2}$
[/mm]
Ich hoffe das stimmt so.
Ciao
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:52 Fr 02.12.2011 | Autor: | luis52 |
>
> [mm]\Rightarrow E(X^2) =\integral_{-\infty}^{\infty}{x \cdot f(x) dx}= \integral_{0}^{1}{x dx}=\bruch{x^2}{2} |_0^1 = \bruch{1}{2}[/mm]
>
> Ich hoffe das stimmt so.
[mm]\Rightarrow E(X^2) =\integral_{-\infty}^{\infty}{x \cdot \underbrace{f(x)}_\text{$x_$ in (0,1)} dx}=\integral_{0}^{1}{x^2 dx}= \ldots[/mm]
vg Luis
|
|
|
|