Erwartungswert Würfel < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:56 Mo 26.05.2014 | Autor: | luise1 |
Aufgabe | (a) Sei X die größte Augenzahl bei einem zweifachen Würfelwurf. Berechnen Sie E[X].
(b) Sei Y die kleinste Augenzahl bei einem zweifachen Würfelwurf. Berechnen Sie E[Y].(Hinweis: Der kürzeste Lösungsweg hierfür benutzt E[X] und den Erwartungswert der Augensumme.)
(c) Nachdem Sie bei Mensch-Ärgere-Dich_nicht dreimal hintereinmander eine 6 gewürfelt haben, bietet Ihnen Ihr verärgerter Mitspieler folgendes an: Bei einer nochmaligen 6 erhalten Sie, 100 Euro, ansonsten geben Sie dem Mitspieler 10 Euro. Nehmen Sie dieses Angebot an? Begründen Sie Ihre Antwort mit einer geeigneten Rechnung. |
Hallo
zur (a) habe ich mir folgendes gedacht:
Ein einfacher Würfelwurf:
E[X]= [mm] \bruch{1+2+3+4+5+6}{6} [/mm] =3,5
---> 2 facher WÜrfelwurf: 3,5*2=E[X]
stimmt das?
zur (b) es gibt 1 mgl. eine 6 als kleinste Augenzahl zu bekommen, 3 Mgl. eine 5 als kleinste Augenzahl zu bekommen, usw...daher haben wir:
6*1/36+5*3/36+4*5/36+3*7/36+2*9/36+1*11/36=...
stimmt das?
zur (c) die Wsk ein viertes mal die 6 zu würfeln liegt bei [mm] (1/6)^4=1/1296. [/mm] wiederum beim vierten mal eine andere Zahl zu würfeln, bei [mm] 1-(1/6)^3-5/6=35/216 [/mm] ??
Vielen, vielen Dank im voraus!!
Liebe Grüße
Luise
|
|
|
|
Hallo,
> (a) Sei X die größte Augenzahl bei einem zweifachen
> Würfelwurf. Berechnen Sie E[X].
> (b) Sei Y die kleinste Augenzahl bei einem zweifachen
> Würfelwurf. Berechnen Sie E[Y].(Hinweis: Der kürzeste
> Lösungsweg hierfür benutzt E[X] und den Erwartungswert
> der Augensumme.)
> (c) Nachdem Sie bei Mensch-Ärgere-Dich_nicht dreimal
> hintereinmander eine 6 gewürfelt haben, bietet Ihnen Ihr
> verärgerter Mitspieler folgendes an: Bei einer nochmaligen
> 6 erhalten Sie, 100 Euro, ansonsten geben Sie dem
> Mitspieler 10 Euro. Nehmen Sie dieses Angebot an?
> Begründen Sie Ihre Antwort mit einer geeigneten Rechnung.
> Hallo
>
> zur (a) habe ich mir folgendes gedacht:
> Ein einfacher Würfelwurf:
> E[X]= [mm]\bruch{1+2+3+4+5+6}{6}[/mm] =3,5
> ---> 2 facher WÜrfelwurf: 3,5*2=E[X]
> stimmt das?
Nein, keinesfalls. Du hast da etwas überlesen, denn die Zufallsvariable X steht grundsätzlich für das Maximum der beiden Augenzahlen. Dafür ist zunächst einmal eine geeignete Verteilung zu finden, bevor man einen Erwartungswert berechnen kann. Dein Erwartungswert ist einfach der für die Augensumme beim zweifachen Würfelwurf, und das ist halt etwas völlig anderes als gefragt ist.
> zur (b) es gibt 1 mgl. eine 6 als kleinste Augenzahl zu
> bekommen, 3 Mgl. eine 5 als kleinste Augenzahl zu bekommen,
> usw...daher haben wir:
> 6*1/36+5*3/36+4*5/36+3*7/36+2*9/36+1*11/36=...
> stimmt das?
Das wiederum stimmt. Mache dir klar, was du da gemacht hast und wende das gleiche Prinzip auf die Aufgabe a) an. Mache dir auch den Sinn und Zweck des gegebenen Tipps klar!
> zur (c) die Wsk ein viertes mal die 6 zu würfeln liegt
> bei [mm](1/6)^4=1/1296.[/mm] wiederum beim vierten mal eine andere
> Zahl zu würfeln, bei [mm]1-(1/6)^3-5/6=35/216[/mm] ??
> Vielen, vielen Dank im voraus!!
Nein, hier muss auch ein Erwartungswert berechnet werden.
Gruß, Diophant
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 09:25 Di 27.05.2014 | Autor: | luise1 |
Hallo Diophant :)
danke für die Hilfe! Ok stimmt, bei der a) hab ich mich vertan. Die geht ja im Grunde genauso wie die b) du hast 11 Mgl. 6 als Ergebnis zu bekommen,9 Mgl 5 als Ergebnis, usw...---> 11/36*6 + 9/36*5+...=...
Zur c) habe ich nun die Binomialverteilung verwendet, also für 4 mal hintereinander die 6 zu würfeln, ergibt : [mm] \vektor{4 \\ 4} [/mm] * [mm] \bruch{1}{6}^4*(1-1/6)^0 [/mm] = 1/324 , sprich der Erwartungswert E(X)=1/324* 4= 1/81 [mm] \hat= [/mm] 100 euro
3 mal hintereinander: [mm] \vektor{4 \\ 3} [/mm] * [mm] \bruch{1}{6}^3*(1-1/6)^1 [/mm] = 5/324, E(X)=5/325 * 4= 5/81 [mm] \hat= [/mm] 10 euro, also haben wir eine höhere Erwartung 3 mal hintereinander eine 6 zu würfeln, als 4 mal. Man sollte das Angebot ausschlagen. Stimmt dies??
Danke und viele liebe Grüße!
Luise
|
|
|
|
|
Hallo,
> Hallo Diophant :)
>
> danke für die Hilfe! Ok stimmt, bei der a) hab ich mich
> vertan. Die geht ja im Grunde genauso wie die b) du hast 11
> Mgl. 6 als Ergebnis zu bekommen,9 Mgl 5 als Ergebnis,
> usw...---> 11/36*6 + 9/36*5+...=...
Ja. Du hast halt nur bisher diesen Hinweis mit dem Erwartungswert der Augensumme nicht weiter nachverfolgt, Ich denke, der wurde nicht grundlos gegeben.
> Zur c) habe ich nun die Binomialverteilung verwendet, also
> für 4 mal hintereinander die 6 zu würfeln, ergibt :
> [mm]\vektor{4 \\ 4}[/mm] * [mm]\bruch{1}{6}^4*(1-1/6)^0[/mm] = 1/324 , sprich
> der Erwartungswert E(X)=1/324* 4= 1/81 [mm]\hat=[/mm] 100 euro
> 3 mal hintereinander: [mm]\vektor{4 \\ 3}[/mm] *
> [mm]\bruch{1}{6}^3*(1-1/6)^1[/mm] = 5/324, E(X)=5/325 * 4= 5/81
> [mm]\hat=[/mm] 10 euro, also haben wir eine höhere Erwartung 3 mal
> hintereinander eine 6 zu würfeln, als 4 mal. Man sollte
> das Angebot ausschlagen. Stimmt dies??
Nein, ich glaube das geht viel einfacher: weshalb soll die Chance, eine Sechs zu werfen, in irgendeiner Weise damit zusammenhängen, dass man soeben dreimal hintereinander eine Sechs geworfen hat?
Gruß, Diophant
|
|
|
|