www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Erwartungswert
Erwartungswert < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert: Erklärung
Status: (Frage) beantwortet Status 
Datum: 18:12 Fr 07.09.2012
Autor: Quadratur

Aufgabe
sei h(x) eine positive wachsende funktion. Dann gilt

[mm] h(c)\IP[X\ge c]\le \mathbbm{E}[h(X)] [/mm]

Guten Tag allerseits,

Im Beweis steht, dass [mm] h(c)\mathbbm{1}_{X\ge c}\le [/mm] h(X) ist (das ist mir auch klar)
Wenn man den Erwartungswert nimmt, so folgt die Aussage ...

Mein Problem ist, weswegen denn [mm] \mathbbm{E}[\mathbbm{1}_{X\ge c}]=\IP[X\ge [/mm] c] ist? Kann mir das vielleicht einer von euch erklären?

Besten Gruß,
Alex

        
Bezug
Erwartungswert: Definition
Status: (Antwort) fertig Status 
Datum: 18:31 Fr 07.09.2012
Autor: Reduktion

Guten Tag,

ich glaub dazu braucht man nur die Definitonen, d.h. [mm] A:=\{X\geq c\} [/mm]

[mm] P(A)=\int \I1_A dP=\int id\circ\I1_A dP=E(\I1_A). [/mm]

Bezug
                
Bezug
Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:30 Fr 07.09.2012
Autor: Quadratur

Also diese Definition kenne ich so nicht ...

wir haben [mm] F_X(x) [/mm] := [mm] \IP[X\le [/mm] x] bzw. [mm] F(x)=\integral_{-\infty}^{x}{f(z) dz} [/mm]

Der Erwartungswert lautet [mm] \mathbbm{E}[X]=\integral_{-\infty}^{\infty}{x f(x) dx} [/mm]

Wahrscheinlich ist es total simpel, aber irgendwie bekomme ich den Zusammenhang gerade nicht hin ...

Bezug
                        
Bezug
Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:45 Sa 08.09.2012
Autor: Quadratur

ich glaube ich hab es, aber es wäre noch nett, wenn das jemand bestätigen könnte:

[mm] \mathbbm{E}[\mathbbm{1}_{X\le c}]=\mathbbm{E}[1\cdot\mathbbm{1}_{X\le c}]=\integral_{-\infty}^{c}{1\cdot f(x) dx}=F_X(c)=\IP[X\le$c$] [/mm]

und analog

[mm] \mathbbm{E}[\mathbbm{1}_{X\ge c}]=\mathbbm{E}[1\cdot\mathbbm{1}_{X\ge c}]=\integral_{c}^{\infty}{1\cdot f(x) dx}=\IP[X\ge$c$]? [/mm]

Argh ... jetzt bin ich dann doch wieder unsicher, ob das so stimmen kann. Ich glaube, dass mein Problem darin liegt, was überhaupt unter [mm] \mathbbm{1}_{X\le c} [/mm] verstanden wird

Bezug
                                
Bezug
Erwartungswert: Zufallsvariable
Status: (Antwort) fertig Status 
Datum: 09:12 Sa 08.09.2012
Autor: Infinit

Hallo Quadratur,
das ist genau der Zusammenhang und damit die Wahrscheinlichkeit, dass die Zufallsvariable X einen Wert annimmt, der größer als das vorgegebene c ist.
Viele Grüße,
Infinit


Bezug
                        
Bezug
Erwartungswert: siehe unten
Status: (Antwort) fertig Status 
Datum: 09:13 Sa 08.09.2012
Autor: Infinit

Hallo,
siehe weiter unten im Thread nach, die Antwort hast du Dir schon selbst gegeben.
Viele Grüße,
Infinit


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]