Endomorphismus? < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:59 So 07.09.2008 | Autor: | Sharadix |
Aufgabe | http://www.mathematik.uni-muenchen.de/~keilhof/linalg2/blatt4.pdf
|
Hallo,
ich bereite mich gerade aufs Vordiplom vor. Bin jetzt gerade bei einer Sache die ich nicht ganz verstehe.
Also habe mal oben ein Arbeitsblatt angehängt. Aufgabe 4-1 und 4-2 im speziellen.
Also ein Homomorphismus besagt ja im endeffekt nur, dass es eine lineare Abbildung GIBT. Das heisst ich muss Linearität nachweisen (homogenität, additivität).
Aber wie weise ich in 4-2 nach, dass es sich um einen Endomorphismus handelt. Ich habe die Musterlösung, dort steht wie ich eine darstellende Matrix berechne, soweit kein Problem. Zum Enomorphismus steht dort leider nichts. Es wird einfach nur Linearität bewiesen.
Bei Wikipedia finde ich zum Endomorphismus folgendes:
In der universellen Algebra ist ein Endomorphismus ein Homomorphismus f:A->A einer mathematischen Struktur A in sich selbst.
Oookey. Also nen Homomorphismus weise ich dann wohl über Linearität nach? Oder wie sonst? Doch wie weise ich den Endomorphismus nach?
Würde mich über antworten freuen. Geht mir hier primär ums Verständnis, weil es ja das es was im Vordiplom abgefragt wird, also würde mich auch nicht über eine etwas ausführlichere Erklärung beschweren :).
Die Lösung der Aufgabe an sich ist mir nicht so wichtig. ( bzw. ich habe die Musterlösung ja eh :) )
|
|
|
|
>
> http://www.mathematik.uni-muenchen.de/~keilhof/linalg2/blatt4.pdf
>
> Hallo,
> ich bereite mich gerade aufs Vordiplom vor. Bin jetzt
> gerade bei einer Sache die ich nicht ganz verstehe.
> Also habe mal oben ein Arbeitsblatt angehängt. Aufgabe 4-1
> und 4-2 im speziellen.
> Also ein Homomorphismus besagt ja im endeffekt nur, dass
> es eine lineare Abbildung GIBT. Das heisst ich muss
> Linearität nachweisen (homogenität, additivität).
> Aber wie weise ich in 4-2 nach, dass es sich um einen
> Endomorphismus handelt. Ich habe die Musterlösung, dort
> steht wie ich eine darstellende Matrix berechne, soweit
> kein Problem. Zum Enomorphismus steht dort leider nichts.
> Es wird einfach nur Linearität bewiesen.
>
> Bei Wikipedia finde ich zum Endomorphismus folgendes:
> In der universellen Algebra ist ein Endomorphismus ein
> Homomorphismus f:A->A einer mathematischen Struktur A in
> sich selbst.
>
> Oookey. Also nen Homomorphismus weise ich dann wohl über
> Linearität nach? Oder wie sonst? Doch wie weise ich den
> Endomorphismus nach?
Endomorphismen sind einfach spezielle Homomorphismen (strukturverträgliche Abbildungen) [mm] $V\rightarrow [/mm] W$, bei denen Definitionsbereich (domain) $V$ und Bildbereich (codomain) $W$ identisch sind: $V=W$. Also: Endomorphismen sind strukturverträgliche Selbstabbildungen einer algebraischen Struktur.
Du musst somit zeigen, dass es sich um einen Homomorphismus handelt (in diesem Falle einer Abbildung von Vektorraum auf Vektorraum um eine lineare Abbildung) und, zusätzlich, dass es sich um eine Selbstabbildung, [mm] $V\rightarrow [/mm] V$, handelt. $V$ ist ja bei der fraglichen Aufgabe etwas speziell definiert, als [mm] $\mathrm{span}(f_1,f_2,f_3)$, [/mm] so dass die Frage, ob es sich um eine lineare Selbstabbildung [mm] $V\rightarrow [/mm] V$ handelt, vielleicht doch nicht gar so trivial zu beantworten ist, wie man dies sonst wohl erwarten würde: denn es ist ja nicht sicher, dass das Bild eines [mm] $f\in\mathrm{span}(f_1,f_2,f_3)$ [/mm] unter der betreffenden linearen Abbildung auch wieder in [mm] $\mathrm{span}(f_1,f_2,f_3)$ [/mm] liegt.
|
|
|
|