Elementar & Los-Vaught Test < naiv < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei [mm] \mathcal{L} [/mm] die Sprache mit binärem Relationssymbol [mm] \mathcal{E} [/mm] und sei [mm] \mathcal{K}_{EINF} \subseteq Str(\mathcal{L}) [/mm] die Klasse aller Äquivalenzrelationen mit unendlich vielen Äquivalenzklassen, die alle unendlich sind. Zu zeigen:
1) [mm] \mathcal{K}_{EINF} [/mm] ist elementar
2) [mm] Th(\mathcal{K}_{EINF}) [/mm] ist vollständig |
Zu 1): [mm] \mathcal{K} [/mm] is elementar [mm] \gdw \mathcal{K}=Mod(Th(\mathcal{K})) [/mm] bzw. [mm] \gdw \mathcal{K}=Mod(\Sigma) [/mm] für ein [mm] \Sigma \subseteq Sen(\mathcal{L})
[/mm]
Hier vermute ich mal, dass ich das Relationssymbol [mm] \mathcal{E} [/mm] zusammen mit dem Fakt, dass es sich um eine Äquivalenzrelation handelt, verwenden soll. [mm] a\mathcal{E}b \gdw \Sigma [/mm] ⊢ a=b Allerdings weiss ich nicht, wie ich daraus dieses [mm] \Sigma [/mm] ableiten soll.
Zu 2): Es scheint mir so, als ob man hier den Los-Vaught Test/Satz anwenden soll, um die Vollständigkeit zu zeigen. Dafür brauchen wir ja eine widerspruchsfreie Theorie [mm] Th(\mathcal{K}_{EINF}) [/mm] , und X eine Menge, s.d.
i) [mm] Sen(\mathcal{L}) \le_c [/mm] X
ii)
iii) A,B [mm] \in Mod(Th(\mathcal{K}_{EINF})), [/mm] A = B = X (gleichmächtig) [mm] \Rightarrow [/mm] A [mm] \cong [/mm] B
Dann wäre [mm] \mathcal{K}_{EINF} [/mm] vollständig
Aus 1) folgt, dass [mm] Mod(Th(\mathcal{K}_{EINF}))=\mathcal{K}_{EINF}, [/mm] d.h. dass wenn sie gleichmächtig sind, eine Bijektion zwischen A und B existiert, somit sind sie isomorph (iii)
[mm] Th(\mathcal{K}_{EINF}) [/mm] hat per Definition nur unendliche Modelle (ii)
Allerdings habe ich keien Ahnung, wie eine Obermenge X aussehen soll, muss ich da P(X) verwenden..?
Es tut mir leid, jedoch ist mir vieles eher unklar in diesem ganzen Definitionenjungle, bin also um jeden Denkanstoss höchst dankbar (und angewiesen:))!
Grüsse^^
Philippe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:20 Mi 18.05.2016 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|