www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Elektrisches Feld
Elektrisches Feld < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Elektrisches Feld: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:55 Di 24.03.2015
Autor: chesiker

Aufgabe
Zeigen Sie, dass das elektrische Feld einer sehr großen, homogen geladenen, leitenden dünnen Platte mit konstanter Flächenladungsdichte sigma= [mm] \bruch{Q}{A} [/mm] >0 (Q ist die Ladung auf der Fläche A) überall auf der Platte konstant ist, senkrecht von der Platte weg zeigt und den Wert |E|= [mm] \bruch{sigma}{{2*\varepsilon_0}} [/mm] im Halbraum über und unter der Platte annimmt. Wegen der großen Ausdehnung können Randeffekte vernachlässigt werden, d.h. die Platte als unendlich ausgedehnt betrachtet werden; wegen der geringen Dicke kann die Platte als unendlich dünn angenommen werden.

Wie soll man bei dieser Aufgabe vorgehen?




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Elektrisches Feld: Antwort
Status: (Antwort) fertig Status 
Datum: 23:17 Di 24.03.2015
Autor: andyv

Hallo,

zeige, dass [mm] $\phi(x,y,z)=-2\pi \sigma|z|$ [/mm] die dreidimensionale Poisson-Gleichung [mm] $\Delta \phi=-4\pi \sigma \delta(z)$ [/mm] löst.

Berechne dann $E=-grad [mm] \phi$. [/mm]

(Ich verwende hier das Gauß-System)

Liebe Grüße


Bezug
                
Bezug
Elektrisches Feld: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:26 Mi 25.03.2015
Autor: chesiker

Aufgabe
zeige, dass $ [mm] \phi(x,y,z)=-2\pi \sigma|z| [/mm] $ die dreidimensionale Poisson-Gleichung $ [mm] \Delta \phi=-4\pi \sigma \delta(z) [/mm] $ löst.

Berechne dann $ E=-grad [mm] \phi [/mm] $.

(Ich verwende hier das Gauß-System)

Könntest du mir mal erklären, wie du auf diesen Ansatz kommst, bzw. wie du auf diese Gleichungen kommst, insbesondere welche Bedeutung [mm] \phi(x,y,z) [/mm] und diese Poisson-Gleichung hat ?

Bezug
                        
Bezug
Elektrisches Feld: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:13 Mi 25.03.2015
Autor: chrisno

Du könntest eventuell leichter zum Ziel kommen, wenn Du verrätst, was Du als bekannt voraussetzen darfst.

Bezug
                        
Bezug
Elektrisches Feld: Antwort
Status: (Antwort) fertig Status 
Datum: 00:04 Do 26.03.2015
Autor: andyv

$ [mm] \Delta \phi=-4\pi \sigma \delta(z) [/mm] $ ist die Maxwell-Gleichung für das Problem. Die rechte Seite trägt gerade der Tatsache Rechnung, dass wir eine dünne Platte auf der xy-Ebene mit Ladungsdichte [mm] $\sigma$ [/mm] haben.

Dass $ [mm] \phi(x,y,z)=-2\pi \sigma|z| [/mm] $ eine Lösung ist, ist die Behauptung aus dem Aufgabentext.
[mm] ($\phi$ [/mm] ist das el. Potential.)

Liebe Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]