Eine kurze Frage zu einem Bewe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) für Interessierte | Datum: | 14:34 Mo 20.07.2015 | Autor: | X3nion |
Ein herzliches Hallo an euch, liebe Community
Ich habe eine Frage zum Umordnungssatz bei Reihen. In der Literatur habe ich einen Beweis gelese, welcher für mich durchaus Sinn macht. Allerdings verstehe ich den letzten Schritt nicht, der aus einer Dreiecksungleichung besteht.
Ich habe hier ein Bild vom Beweis, um ihn nicht komplett abtippen zu müssen:
[Bild Nr. 1 (fehlt/gelöscht)]
In der letzten Zeile ist ja:
[mm] |\summe_{k=0}^{m} a_{\gamma(k)} [/mm] - A | [mm] \le |\summe_{k=0}^{m} a_{\gamma(k)} [/mm] - [mm] \summe_{k=0}^{n_{0}-1} a_{k}| [/mm] - [mm] |\summe_{k=0}^{n_{0}-1} a_{k} [/mm] - A| [mm] \le \summe_{k=n_{0}}^{\infty} |a_{k}| [/mm] + [mm] \bruch{\varepsilon}{2} [/mm] < [mm] \varepsilon [/mm] .
Ich denke mir als Zwischenschritt folgendes, da ja bei Konvergenzbeweisen die "null" geschickt addiert und wieder subtrahiert und dann die Dreiecksungleichung angewandt wird. Allerdings käme ich dann auf eine etwas andere Dreiecksungleichung.
[mm] |\summe_{k=0}^{m} a_{\gamma(k)} [/mm] - A | [mm] \le |\summe_{k=0}^{m} a_{\gamma(k)} [/mm] + [mm] \summe_{k=0}^{n_{0}-1} a_{k} [/mm] - [mm] \summe_{k=0}^{n_{0}-1} a_{k} [/mm] - A| [mm] |\summe_{k=0}^{m} a_{\gamma(k)} [/mm] - [mm] \summe_{k=0}^{n_{0}-1} a_{k}| [/mm] + [mm] |\summe_{k=0}^{n_{0}-1} a_{k} [/mm] - A|
Ich habe jeweils das + und - rot markiert, damit man die für mich unschlüssige Stelle sieht. Könnt ihr mir da vielleicht weiterhelfen, wieso beim Beweis ein Minus steht, ich aber durch den Zwischenschritt auf ein plus komme?
Ich wäre euch sehr dankbar!
Viele Grüße,
Christian
|
|
|