www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Eindeutigkeit, Picard-Lindelöf
Eindeutigkeit, Picard-Lindelöf < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eindeutigkeit, Picard-Lindelöf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:55 Mi 17.02.2016
Autor: sissile

Aufgabe
Sei G [mm] \subset \mathbb{R} \times \mathbb{R}^n [/mm] und f: G [mm] \rightarrow \mathbb{R}^n [/mm] eine stetige FUnktion, die lokal einer lokal einer Lipschitz-Bedingung genügt. Seien [mm] \psi, \phi: [/mm] I [mm] \rightarrow \mathbb{R}^n [/mm] zwei Lösungen der Differentialgleichung y'(t)=f(x,y) über [mm] I\subseteq \mathbb{R} [/mm]
Gilt [mm] \phi(x_0)=\psi(x_0) [/mm] für ein [mm] x_0 \in [/mm] I
[mm] \Rightarrow \phi(x)=\psi(x) \forall x\in [/mm] I

Hallo,
Der Beweis ist an zwei Stellen unklar!

Im Skript steht (Heuser Analysis 2, S.152):

Behauptung 1: Sei [mm] \phi(a)=\psi(a) [/mm] für a [mm] \in [/mm] I so [mm] \exists \epsilon: \phi(x)=\psi(x) \forall [/mm] x [mm] \in [/mm] I mit [mm] |x-a|<\epsilon. [/mm]

Die Differentialgleichung mit Anfangsbedingung ist äquivalent zu
[mm] \phi(x) [/mm] - [mm] \psi(x)= \int_a^x (f(t,\phi(t))-f(t, \psi(t))) [/mm] dt
Da f lokal einer Lipschitzbedingung genügt: [mm] \exists [/mm] L>0, [mm] \delta>0: [/mm]
||f(t, [mm] \phi(t))- [/mm] f(t, [mm] \psi(t))|| \le [/mm] L [mm] ||\phi(t) [/mm] - [mm] \psi(t)|| [/mm]
[mm] \forall [/mm] t [mm] \in [/mm] I [mm] \cap B_{\delta} (a)=\{t \in I: |t-a|<\delta\} [/mm]

> Hier verstehe ich nicht, wieso ich die Umgebung genau so wählen kann. Wenn ich einen Punkt (a,i) [mm] \in [/mm] G habe dann weiß ich doch nur dass die Lipschitzbedingung für eine Umgebung U(a,i) um (a,i) [mm] \in [/mm] G gilt. Aber wieso gibt es kein Intervall für die zweite Komponente i [mm] \in \mathbb{R}^n? [/mm]

Wir können annehmen, dass [mm] \phi [/mm] und [mm] \psi [/mm] in I [mm] \cap B_{\delta} [/mm] (a) beschränkt sind.

> Warum können wir das annehmen? Als Lösungen der Differentialgleichung sind sie stetige Funktionen (als differenzierbare Funktionen), aber wieso ist I [mm] \cap B_{\delta} [/mm] (a)  kompakt?

Sei M:= [mm] sup\{||\phi(t) - \psi(t)||: t \in I \cap B_{\delta} (a) \} [/mm]
[mm] \epsilon [/mm] := min [mm] \{\delta, \frac{1}{2L}\} [/mm]
[mm] \forall [/mm] x [mm] \in [/mm] I [mm] \cap B_{\delta} [/mm] (a)  folt [mm] ||\psi(x) [/mm] - [mm] \psi(x)||\le [/mm] L [mm] \int_a^x ||\phi(t) [/mm] - [mm] \psi(t)|| [/mm] dt| [mm] \le [/mm] L |x-a| M < L [mm] \epsilon [/mm] M [mm] \le \frac{1}{2} [/mm] M
[mm] \Rightarrow [/mm] M [mm] \le \frac{1}{2} [/mm] M [mm] \Rightarrow [/mm] M=0 [mm] \Rightarrow \phi(t)=\psi(t) \forall [/mm] t [mm] \in [/mm] I [mm] \cap B_{\delta} [/mm] (a)

Daraus dann die Behauptung im Satz zu folgen hab ich verstanden und führe ich deshalb hier nicht aus.

LG,
sissi

        
Bezug
Eindeutigkeit, Picard-Lindelöf: Antwort
Status: (Antwort) fertig Status 
Datum: 09:06 Do 18.02.2016
Autor: fred97

Zunächst sollten wir klären, was "lokale Lipschirtbedingung" bedeutet. Nämlich das:

Zu jedem [mm] $(t_0,y_0) \in [/mm] G$ existiert eine Umgebung [mm] $U=U(t_0,y_0)$ [/mm] von [mm] (t_0,y_0) [/mm] und eine Konstante [mm] L=L(t_0,y_0) \ge [/mm] 0 mit

   (*) $||f(t,y)-f(t,z)|| [mm] \le [/mm] L||y-z||$  für alle $(t,y),(t,z) [mm] \in [/mm] G [mm] \cap [/mm]   U$.


Zu Deiner Frage: Wir setzen [mm] t_0:=a [/mm] und [mm] $y_0:=\phi [/mm] (a) (= [mm] \psi [/mm] (a)).$  U und L seien nun wie oben. [mm] \phi [/mm] und [mm] \psi [/mm] sind stetig auf I , also auch in [mm] t_0. [/mm] Somit gibt es ein [mm] \delta [/mm] >0 mit

   [mm] $(t,\phi [/mm] (t)), (t, [mm] \psi [/mm] (t)) [mm] \in [/mm] G [mm] \cap [/mm] U$  für alle t [mm] \in [/mm] I mit |t-a| < [mm] \delta. [/mm]

Aus (*) folgt dann:

  $||f(t,  [mm] \phi(t))- [/mm] f(t,  [mm] \psi(t))|| \le [/mm]  L  [mm] ||\phi(t) [/mm] - [mm] \psi(t)|| [/mm] $ für alle t [mm] \in [/mm] I mit |t-a| < [mm] \delta. [/mm]

FRED

Bezug
                
Bezug
Eindeutigkeit, Picard-Lindelöf: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:57 Fr 19.02.2016
Autor: sissile

Danke für die Erklärung!!

Kannst du noch auf meine zweite Frage im ersten Post eingehen: Warum können wir annehmen, dass $ [mm] \phi [/mm] $ und $ [mm] \psi [/mm] $ in I $ [mm] \cap B_{\delta} [/mm] $ (a) beschränkt sind? Also warum ist I [mm] \cap B_{\delta} [/mm] (a) kompakt?

LG,
sissi

Bezug
                        
Bezug
Eindeutigkeit, Picard-Lindelöf: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 So 21.02.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]