www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte inverse Abbildung
Eigenwerte inverse Abbildung < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte inverse Abbildung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:21 So 23.03.2014
Autor: dodo1924

Aufgabe
Ist [mm] \lambda [/mm] Eigenwert des invertierbaren linearen Operators T, dann ist [mm] \lambda^-1 [/mm] Eigenwert von T^-1!

Okay!
Ich weiß, dass falls beispielsweise [mm] \lambda [/mm] der Eigenwert einer invertierbaren Matrix A ist folgendes gilt:
A*v= [mm] \lambda* [/mm] v [mm] \Rightarrow A^{-1} [/mm] * A * v = [mm] \lambda [/mm] * [mm] A^{-1} [/mm] * v [mm] \Rightarrow [/mm] v = [mm] \lambda [/mm] * [mm] A^{-1} [/mm] * v [mm] \Rightarrow (1/\lambda) [/mm] * v = [mm] \lambda^{-1} [/mm] * v =  [mm] A^{-1} [/mm] * v
Also wäre [mm] \lambda^{-1} [/mm] EW von [mm] A^{-1}! [/mm]

Doch wie gehe ich nun bei einem linearen Operator vor?
Kann ich einfach annehmen, dass es eine Basis [mm] \beta [/mm] gibt, für die [mm] [T]_\beta [/mm] *  v = [mm] \lambda [/mm] * v?
Weil da T invertierbar ist wäre dann auch [mm] [T]_\beta [/mm] invertierbar und ich könnte einfach obiges Schema anwenden!

        
Bezug
Eigenwerte inverse Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:52 So 23.03.2014
Autor: Teufel

Hi!

Basen brauchst du dir eigentlich gar nicht angucken. [mm] \lambda [/mm] ist Eigenwert von T [mm] $\Rightarrow \exists [/mm] v: [mm] T(v)=\lambda [/mm] v$. Ferner ist [mm] $\lambda \not= [/mm] 0$ (warum?). Dann kannst wie gehabt fortfahren.

Bezug
                
Bezug
Eigenwerte inverse Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:43 So 23.03.2014
Autor: dodo1924

Okay, nach deiner Vorgehensweise müsste ich den beweis folgend führen:
sei T(v) = [mm] \lambda [/mm] * v
Sei nun [mm] T^{-1} [/mm] die inverse Abbildung zu T
Also muss ja (nach def der inversen Abbildung) [mm] T^{-1}\circ [/mm] T (v) = v

Nun gilt ja, dass [mm] T^{-1}\circ [/mm] T (v) = [mm] T^{-1}(T(v)) [/mm] = [mm] T^{-1}(\lambda [/mm] * v) = [mm] \lambda [/mm] * [mm] T^{-1}(v) [/mm] = [mm] \lambda [/mm] * [mm] \lambda^{-1} [/mm] * v = v
Also muss die inverse Abbildung immer [mm] T^{-1}(v) [/mm] = [mm] \lambda^{-1} [/mm] * v sein!
Oder?

Nur aus interesse: ist meine lösung trotzdem auch richtig??

lg und danke :)

Bezug
                        
Bezug
Eigenwerte inverse Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:51 So 23.03.2014
Autor: fred97

Du meinst es sicher richtig, schreibst es aber unglücklich auf.


Aus [mm] $T(v)=\lambda*v$ [/mm]  und [mm] \lambda \ne [/mm] 0 folgt


  $ [mm] \lambda*T^{-1}(v)=T^{-1}(T(v))=v$ [/mm]

Damit ist [mm] T^{-1}(v)= \bruch{1}{\lambda}v [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]