www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte
Eigenwerte < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:21 Do 31.07.2014
Autor: moerni

Hallo!

Ich komme aus dem Bereich Numerik und bin nun bei einem Problem, bei dem eventuell die Lineare Algebra helfen kann. Und zwar will ich den kleinsten Eigenwert einer Matrix der Form:

M = [mm] \pmat{A & 0 \\ 0 & B} [/mm]

bestimmen. Problem: die Dimension von M ist riesig (so dass Nullstelle des char. Polynoms usw. unmöglich zu berechnen ist). Info über M: M ist symmetrisch, A und B sind dünn besetzte Blockmatrizen. Der kleinste Eigenwert von M ist sehr klein und liegt voraussichtlich im Bereich 10^-4

Frage an alle Experten der Linearen Algebra: fällt euch eine Möglichkeit ein, den kleinsten Eigenwert von M irgendwie abzuschätzen? Oder gibt es einen effektiven Algorithmus, der den kleinsten Eigenwert von M in dieser Situation bestimmen kann?

Liebe Grüße,
moerni

        
Bezug
Eigenwerte: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mi 06.08.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]