www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "stochastische Analysis" - Eigenwertberechnung
Eigenwertberechnung < stoch. Analysis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwertberechnung: Hilfestellung, Tipp, Idee
Status: (Frage) beantwortet Status 
Datum: 16:46 Do 04.02.2010
Autor: Marcel08

Aufgabe
Die Durchführung einer Hauptkomponentenanalyse auf Basis der Korrelationsmatrix liefert folgende Eigenwerte.

5.83, 0.98, ?.??, 0.29, 0.24, 0.13, 0.07, 0.01


Wie hoch ist der fehlende Eigenwert?

Hallo Matheraum!


Wie kann man hier den fehlenden Eigenwert berechnen?





Gruß, Marcel

        
Bezug
Eigenwertberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:29 Do 04.02.2010
Autor: luis52


> Die Durchführung einer Hauptkomponentenanalyse auf Basis
> der Korrelationsmatrix liefert folgende Eigenwerte.
>  
> 5.83, 0.98, ?.??, 0.29, 0.24, 0.13, 0.07, 0.01
>  
>
> Wie hoch ist der fehlende Eigenwert?
>  Hallo Matheraum!
>  
>
> Wie kann man hier den fehlenden Eigenwert berechnen?
>  

Moin Marcel,

was kannst du ueber die Spur der Korrelationsmatrix aussagen?

vg Luis

Bezug
                
Bezug
Eigenwertberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:06 Do 04.02.2010
Autor: Marcel08

Die Hauptdiagonaleneinträge der Korrelationsmatrix müsste aus Einsen bestehen, während die Nebendiagonale den Korrelationskoeffizienten angibt? Zweiteres trifft zumindest auf eine 2x2-Matrix zu.

Okay, dann darf ich einfach alle dort aufgeführten Eigenwerte von 8 subtrahieren. Wenn ich das tue, erhalte ich für den fehlenden Eigenwert den Wert 0.45. Dieser Wert würde auch in das offensichtliche Intervall passen.

Vielen Dank jedenfalls!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]