Eigenwert wenn AB=BA < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Es seien A,B [mm] \in \IR^{nxn}. [/mm] Die Matrix A habe n paarweise verschiedene relle Eigenwerte. Weiter gelte AB = BA. Zeigen sie:
a) Zu jedem Eigenwert [mm] \lambda [/mm] von A existiert ein (reeller) Eigenvektor v [mm] \in\IR^{n}.
[/mm]
b) Jeder Eigenvektor von A ist auch ein Eigenvektor von B.
c) Es existiert eine invertierbare Matrix [mm] C\in\IR^{nxn}, [/mm] sodass sowohl [mm] C^{-1}AC [/mm] als auch [mm] C^{-1}BC [/mm] Diagonalmatrizen sind.
d) Zeigen Sie mit einem einfachen Gegenbeispiel, dass b) (und damit auch c)) nicht gilt, falls A einen Eigenwert mit algebraischer Multiplizität 2 hat. |
Hey, ich stehe grad vor dieser etwas theorielastigen Frage und komme nicht so recht weiter.
Bei a) dachte ich mir, dass die Existenz eines Eigenvektors ja schon durch die Definition des Eigenwerts gegeben ist, denn der Eigenvektor stellt ja den Kern der Matrix [mm] A-\lambda*I [/mm] dar und [mm] \lambda [/mm] wird genau so gewählt, dass die Determinante dieser Matrix = 0 wird. Somit ist die Matrix singulär und der Kern ist nicht mehr trivial. Nun bin ich mir aber nicht sicher, dass das ein gültiger Beweis ist und nicht eher einfach nur so dahergelabert.
Für b) habe ich mir erst überlegt, für welche Matrizen denn AB = BA überhaupt gelten kann. Dies gilt z.B. ja, wenn wie in c) gefragt die Matrix auf diese Art und weise diagonalisierbar ist. Eine weitere Möglichkeit ist, dass A oder B ein vielfaches der Einheitsmatrix ist. Die letzte Möglichkeit die mir in den Sinn gekommen ist, wäre A = B.
Wenn man nun A und B in Diagonalform bringt, dann muss AB = [mm] PJaJbP^{-1} [/mm] gelten, wobei P die Transformationsmatrix und J die jeweilige Diagonalmatrix ist.
Da Ja und Jb in Diagonalform vorliegen kommutieren sie, also gilt BA = [mm] PJbJaP^{-1}. [/mm] Da beide die gleiche Transformationsmatrix verwenden und diese aus den Eigenvektoren besteht, müssen beide die selben Eigenvektorn haben. Ist durch AB = BA diagonalisierbarkeit eindeutig gegeben?
c) Habe ich im Prinzip ja oben gerade verwendet
d) Wenn A einen Eigenwert mit algebraischer Vielfachheit 2 hat, dann gibt es eventuell nicht n linear unabhängige Eigenvektoren und die Matrix ist nicht mehr diagonalisierbar sondern nur z.B. als Jordan Normalform darstellbar.
Ich hoffe das ist jetzt nicht zu viel und schonmal vielen Dank für jede Hilfe!
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.onlinemathe.de/forum/Eigenwerte-und-Eigenvektoren-falls-AB-BA
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:34 Mi 17.05.2017 | Autor: | hippias |
> Es seien A,B [mm]\in \IR^{nxn}.[/mm] Die Matrix A habe n paarweise
> verschiedene relle Eigenwerte. Weiter gelte AB = BA. Zeigen
> sie:
> a) Zu jedem Eigenwert [mm]\lambda[/mm] von A existiert ein
> (reeller) Eigenvektor v [mm]\in\IR^{n}.[/mm]
>
> b) Jeder Eigenvektor von A ist auch ein Eigenvektor von B.
>
> c) Es existiert eine invertierbare Matrix [mm]C\in\IR^{nxn},[/mm]
> sodass sowohl [mm]C^{-1}AC[/mm] als auch [mm]C^{-1}BC[/mm] Diagonalmatrizen
> sind.
>
> d) Zeigen Sie mit einem einfachen Gegenbeispiel, dass b)
> (und damit auch c)) nicht gilt, falls A einen Eigenwert mit
> algebraischer Multiplizität 2 hat.
>
>
> Hey, ich stehe grad vor dieser etwas theorielastigen Frage
> und komme nicht so recht weiter.
> Bei a) dachte ich mir, dass die Existenz eines Eigenvektors
> ja schon durch die Definition des Eigenwerts gegeben ist,
Dem stimme ich zu. Zur Sicherheit kannst Du aber gerne eure Definition hier mitteilen, ob es da für Dich nicht doch etwas zu beweisen gibt.
> denn der Eigenvektor stellt ja den Kern der Matrix
> [mm]A-\lambda*I[/mm] dar und [mm]\lambda[/mm] wird genau so gewählt, dass
> die Determinante dieser Matrix = 0 wird. Somit ist die
> Matrix singulär und der Kern ist nicht mehr trivial. Nun
> bin ich mir aber nicht sicher, dass das ein gültiger
> Beweis ist und nicht eher einfach nur so dahergelabert.
>
> Für b) habe ich mir erst überlegt, für welche Matrizen
> denn AB = BA überhaupt gelten kann.
Das ist eine interesant Idee, die bei anderen Fragen auch zum Erfolg führen kann. Doch glaube ich, dass die Möglichkeiten für $AB=BA$ zu vielfältig sind, als dass dieser Ansatz hier etwas helfen wird.
Überlege Dir, dass $E:= Kern [mm] (A-\lambda)$ [/mm] unter $B$ invariant ist. Nun finde die Dimension von $E$ heraus. Damit und der $B$-Invarianz kann man auf die Behauptung schliessen.
> Dies gilt z.B. ja,
> wenn wie in c) gefragt die Matrix auf diese Art und weise
> diagonalisierbar ist. Eine weitere Möglichkeit ist, dass A
> oder B ein vielfaches der Einheitsmatrix ist. Die letzte
> Möglichkeit die mir in den Sinn gekommen ist, wäre A = B.
>
> Wenn man nun A und B in Diagonalform bringt, dann muss AB =
> [mm]PJaJbP^{-1}[/mm] gelten, wobei P die Transformationsmatrix und J
> die jeweilige Diagonalmatrix ist.
> Da Ja und Jb in Diagonalform vorliegen kommutieren sie,
> also gilt BA = [mm]PJbJaP^{-1}.[/mm] Da beide die gleiche
> Transformationsmatrix verwenden und diese aus den
> Eigenvektoren besteht, müssen beide die selben
> Eigenvektorn haben. Ist durch AB = BA diagonalisierbarkeit
> eindeutig gegeben?
Diese Frage verstehe ich nicht.
>
> c) Habe ich im Prinzip ja oben gerade verwendet
Du musst Dir klar machen, dass es eine Basis gibt, die aus Eigenvektoren von $A$ und gleichzeitig $B$ besteht; ist eine Anwendung von b)
>
> d) Wenn A einen Eigenwert mit algebraischer Vielfachheit 2
> hat, dann gibt es eventuell nicht n linear unabhängige
> Eigenvektoren und die Matrix ist nicht mehr
> diagonalisierbar sondern nur z.B. als Jordan Normalform
> darstellbar.
Ja. Du musst aber ein Zahlenbeispiel angeben.
>
> Ich hoffe das ist jetzt nicht zu viel und schonmal vielen
> Dank für jede Hilfe!
>
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>
> http://www.onlinemathe.de/forum/Eigenwerte-und-Eigenvektoren-falls-AB-BA
|
|
|
|