www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenwert/Eigenvektor
Eigenwert/Eigenvektor < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwert/Eigenvektor: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:31 Mi 24.11.2010
Autor: NivisPluma

Aufgabe 1
Aufgabe 1: Sei c [mm] \in [/mm] [0,1] beliebig.Berechnen Sie die Eigenwerte und -vektoren von
[mm] A=\pmat{ 1 & c & 0 \\ c & 1 & c \\ 0 & c & 1} \in [/mm] m(3x3,R).
Geben Sie das kleinste Intervall an, so dass alle Eigenwerte für ein beliebiges c in diesem Intervall liegen.

Aufgabe 2
Aufgabe 2: Berechnen Sie die Eigenwerte und Eigenvektoren der reellen nxn-Matrix

[mm] J:=\pmat{ n & 1 & ... & ... & 0 \\ 0 & n & 1 & ... & ... \\ 0 & ... & n & ... & .... \\ ... & ... & ... & ... & ...\\ ... & ... & ... & ... & 1 \\ ... & ... & ... & ... & n} [/mm]

Überprüfen Sie für die Matrix J rechnerisch die Gültigkeit des Satzes von Cayley-Hamilton.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,
zu Aufgabe 1:
Also ich dachte ich rechne erstmal [mm] det(T\*I-A) [/mm] aus, weil dessen Nullstellen ja die Eigenwerte von A sind. Soweit so gut. Ich hab dann rausbekommen
det [mm] \pmat{ (T-1 & -c & 0 \\ -c & (T-1) & -c \\ 0 & -c & (T-1) } [/mm]
Dann hab ich mir der REgel von Sarrus die Determinante berechnet.
Da bekomme ich raus: [mm] T^{3} -3T^{2} +3T-2Tc^{2}+2c^{2}-1. [/mm]
Und jetzt weiss ich irgendwie nicht weiter. Was mache ich denn als nächstes? Wie komme ich auf die Nullstellen?
Zur Aufgabe 2:
Dort müsste die Determinante doch eigentlich einfach [mm] (T-1)^{n} [/mm] sein, oder? Und damit ist n eine Nullstelle und der Eigenwert von J, oder hab ich da einen Denkfehler drin?

Freue mich über jede Hilfe!
Vielen Dank schon mal!

        
Bezug
Eigenwert/Eigenvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 23:15 Mi 24.11.2010
Autor: schachuzipus

Hallo NivisPluma,


> Aufgabe 1: Sei c [mm]\in[/mm] [0,1] beliebig.Berechnen Sie die
> Eigenwerte und -vektoren von
>  [mm]A=\pmat{ 1 & c & 0 \\ c & 1 & c \\ 0 & c & 1} \in[/mm]
> m(3x3,R).
>  Geben Sie das kleinste Intervall an, so dass alle
> Eigenwerte für ein beliebiges c in diesem Intervall
> liegen.
>  Aufgabe 2: Berechnen Sie die Eigenwerte und Eigenvektoren
> der reellen nxn-Matrix
>  
> [mm]J:=\pmat{ n & 1 & ... & ... & 0 \\ 0 & n & 1 & ... & ... \\ 0 & ... & n & ... & .... \\ ... & ... & ... & ... & ...\\ ... & ... & ... & ... & 1 \\ ... & ... & ... & ... & n}[/mm]
>  
> Überprüfen Sie für die Matrix J rechnerisch die
> Gültigkeit des Satzes von Cayley-Hamilton.
>   Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo,
>  zu Aufgabe 1:
>  Also ich dachte ich rechne erstmal [mm]det(T\*I-A)[/mm] aus, weil
> dessen Nullstellen ja die Eigenwerte von A sind. Soweit so
> gut. Ich hab dann rausbekommen
>  det [mm]\pmat{ (T-1 & -c & 0 \\ -c & (T-1) & -c \\ 0 & -c & (T-1) }[/mm]
>  
> Dann hab ich mir der REgel von Sarrus die Determinante
> berechnet.
> Da bekomme ich raus: [mm]T^{3} -3T^{2} +3T-2Tc^{2}+2c^{2}-1.[/mm]
>  
> Und jetzt weiss ich irgendwie nicht weiter.

Das kommt davon, wenn man alles wie wild ausmultipliziert anstatt zu faktorisieren.

Sarrus liefert dir doch schon eine NST gratis!

[mm]Det=(T-1)^3-2c^2(T-1)[/mm] nach Sarrus

[mm]=(T-1)\cdot{}\left[(T-1)^2-2c^2\right][/mm]

Also [mm]T=1[/mm] oder ... quadrat. Ergänzung oder was auch immer

> Was mache ich
> denn als nächstes? Wie komme ich auf die Nullstellen?
>  Zur Aufgabe 2:
>  Dort müsste die Determinante doch eigentlich einfach
> [mm](T-1)^{n}[/mm] sein, oder?

Eher [mm](T-n)^n[/mm], das ist ja eine Dreiecksmatrix, also Det=Produkt der Hauptdiagonaleinträge

> Und damit ist n eine Nullstelle und
> der Eigenwert von J, [ok] oder hab ich da einen Denkfehler drin?
>
> Freue mich über jede Hilfe!
>  Vielen Dank schon mal!

Gruß

schachuzipus


Bezug
        
Bezug
Eigenwert/Eigenvektor: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:40 Do 25.11.2010
Autor: NivisPluma


Bezug
        
Bezug
Eigenwert/Eigenvektor: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Fr 26.11.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]