www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Eigenschaften \delta
Eigenschaften \delta < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenschaften \delta: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:52 Fr 09.03.2012
Autor: sissile

Aufgabe
Sei [mm] \IK [/mm] Körper, n [mm] \in \IN [/mm] und [mm] \delta: M_{n \times n} [/mm] -> [mm] \IK [/mm] eine Funktion, die folgende beiden Eigenschaften besitzt:
[mm] \delta [/mm] ist multilinear
Sind zwei benachbarte Spalten von A gleich, so gilt [mm] \delta(A)=0 [/mm]

ZZ:
Für jedes j [mm] \in [/mm] {1,..n} und jede Matrix A gilt
[mm] \delta(A)= \sum_{i=1}^n \delta(A_{(ij)}) [/mm]
Dabei bezeichnet [mm] A_{(ij)} [/mm] jene (n [mm] \times [/mm] n) Matrix, die wir aus A erhalten wenn wir jeden Eintrag der i-ten Zeile und j-ten SPalte, außer [mm] A_{ij}, [/mm] durch 0 ersetzten.

Übrigens die folgenden Eigenschaften haben wir schon in der Vorlesung gezeigt:
Beim Vertauschen zweier Spalten von [mm] \delta(A) [/mm] wechselt Vorzeichen
Sind zwei SPalten von A gleich gilt [mm] \delta(A)=0 [/mm]
Addieren wir ein Vielfaches einer Spalte von A zu einer anderen SPalte, dann bleibt [mm] \delta(A) [/mm] unverändert.
Ist rank(A) <n dann gilt [mm] \delta(A)=0 [/mm]

Im Skript steht dazu folgendes:
Für die j-te Spalte von A gilt [mm] a_j =\sum_{i=1}^n A_{ij} e_i [/mm] wobei [mm] A_{ij} [/mm] den Eintrag der i-ten Zeile und j-ten Spalte von A bezeichnet.
Es folgt:
[mm] \delta(A)=\sum_{i=1}^n \delta(a_1|....|a_{j-1}|A_{ij}e_i|a_{j+1}|...|a_n) [/mm] = [mm] \sum_{i=1}^n \delta (A_{(ij)}) [/mm]
denn es gilt: [mm] \delta(a_1|....|a_{j-1}|A_{ij}e_i|a_{j+1}|...|a_n) [/mm] = [mm] \delta (A_{(ij)}) [/mm]

Ich hab da zwei Fragen dazu:

> Für die j-te Spalte von A gilt [mm] a_j =\sum_{i=1}^n A_{ij} e_i [/mm] wobei ...

Gilt das für jede beliebige Matrix, dass man die j-te Spalte so schreiben kann als Vielfaches von den [mm] A_{ij}- [/mm] EIntrag? Eigentlich schon oder?

> denn es gilt: (*) [mm] \delta(a_1|....|a_{j-1}|A_{ij}e_i|a_{j+1}|...|a_n) [/mm] = [mm] \delta (A_{(ij)}) [/mm]

Wenn [mm] A_{ij}=0 [/mm] ist, dann verschwindet die gesamte j-te Spalte von beiden Seiten (*). Kann ich dann argumentieren, da die 0-Spalte linear abhängig von jeder Spalte ist ist  [mm] \delta(a_1|....|a_{j-1}|A_{ij}e_i|a_{j+1}|...|a_n) [/mm] sowie [mm] \delta (A_{(ij)}) [/mm] gleich 0?
Oder muss man da mit Linearität das begründen aber wie? (Ich weiß, dass lineare Abbildungen 0 auf 0 abbilden, aber nicht wie ich das hier anwende.)
Ist [mm] A_{ij}\not=0 [/mm] weiß ich nicht ganz weiter! Ich denke Spaltenumformungen haben was damit zu tun, aber weiß nicht ganz weiter.

Danke, lg


        
Bezug
Eigenschaften \delta: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 So 11.03.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]