www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Eigenschaften Integralfunktion
Eigenschaften Integralfunktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenschaften Integralfunktion: Tipps
Status: (Frage) beantwortet Status 
Datum: 15:03 Di 07.06.2011
Autor: Mathegirl

Aufgabe
a)  [mm] \integral_{a}^{b}{-f} [/mm] =  - [mm] \integral_{a}^{b}{f} [/mm]

[mm] b)\integral_{a}^{b}{[x \to c]} [/mm] = (b-a)*c

[mm] c)\integral_{a}^{b}{f_1} \le \integral_{a}^{b}{f_2} [/mm] , wenn [mm] f_1(x) \le f_2(x) [/mm] , x [mm] \in [/mm] [a,b], (a [mm] \le [/mm] b)

d)(b-a)*m [mm] \le \integral_{a}^{b}{f} \le [/mm] (b-a)*M , m [mm] \le [/mm] f(x) [mm] \le [/mm] M, x [mm] \in [/mm] [a,b]

ich muss diese Eigenschaften der Integralfunktion begründen..aber das Formulieren fällt mir etwas schwer...
vom verständnis her ist ja alles klar...

a) ist ja klar..wenn man eine negative Fläche integriert, dann kann auch die positive Fläche berechnet werden und das Vorzeichen zum schluss gesetzt werden.


die anderen Eigenschaften verstehe ich nicht so recht...


Mfg
Mathegirl

        
Bezug
Eigenschaften Integralfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:12 Di 07.06.2011
Autor: fred97


> a)  [mm]\integral_{a}^{b}{-f}[/mm] =  - [mm]\integral_{a}^{b}{f}[/mm]
>  
> [mm]b)\integral_{a}^{b}{[x \to c]}[/mm] = (b-a)*c
>  
> [mm]c)\integral_{a}^{b}{f_1} \le \integral_{a}^{b}{f_2}[/mm] , wenn
> [mm]f_1(x) \le f_2(x)[/mm] , x [mm]\in[/mm] [a,b], (a [mm]\le[/mm] b)
>  
> d)(b-a)*m [mm]\le \integral_{a}^{b}{f} \le[/mm] (b-a)*M , m [mm]\le[/mm] f(x)
> [mm]\le[/mm] M, x [mm]\in[/mm] [a,b]
>  ich muss diese Eigenschaften der Integralfunktion
> begründen..aber das Formulieren fällt mir etwas
> schwer...
>  vom verständnis her ist ja alles klar...
>  
> a) ist ja klar..wenn man eine negative Fläche integriert,
> dann kann auch die positive Fläche berechnet werden und
> das Vorzeichen zum schluss gesetzt werden.

Das ist doch kein Beweis !

Schreib Dir doch mal eine Obersumme oder eine Untersumme oder eine Riemannsche Zwischensumme für $ [mm] \integral_{a}^{b}{(-f)(x) dx} [/mm] $ hin.

Dann brauchst Du noch [mm] $\summe_{i=1}^{n}(-a_i)= [/mm] - [mm] \summe_{i=1}^{n}a_i$ [/mm] .

Dann steht alles da.

>  
>
> die anderen Eigenschaften verstehe ich nicht so recht...

b) Das soll wohl $ [mm] \integral_{a}^{b}{c dx} [/mm] =c(b-a)$ lauten. Auch das kannst Du mit Obersumme oder Untersumme oder einer Riemannsche Zwischensumme sofort erledigen.

c) Ebenso mit Obersumme oder  Untersumme oder  Riemannscher Zwischensumme

>  

d) folgt aus b) und c)

FRED

>
> Mfg
> Mathegirl


Bezug
                
Bezug
Eigenschaften Integralfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:52 Di 07.06.2011
Autor: Mathegirl

nein, es soll kein beweis sein...es geht um eine begründung für schüler der 9. klasse!! nicht beweisen!!

z.B. [mm] \integral_{a}^{a}{f}= [/mm] 0 habe ich folgendermaßen beschrieben, begründet:

Sind die Integrationsgrenzen gleich, so erhält man eine flächenlose Strecke. Wenn obere und untere Grenze aufeinander fallen entsteht geometrisch keine fläche.

in so einer art soll ich das amchen..fällt mir aber recht schwer mich auszudrücken
!

Bezug
                        
Bezug
Eigenschaften Integralfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 08:01 Mi 08.06.2011
Autor: kamaleonti

Hallo mathegirl,

wenn du es schon anschaulich erklären sollst, dann fertige stets eine Zeichnung an. Bei a) z. B. einmal f und -f und dann erklärst du die unterschiedliche Orientierungen der Flächen bezüglich der x- Achse.

Bei b) erkennt man dann eine Rechtsecksfläche, bei c) liegt der eine Funktionsgraph unterhalb des anderen.

Bei d) zeichne eine entsprechendes Rechteck um den Graphen.

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]