www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Fourier-Transformation" - Eigenfunktion Fourierreihe
Eigenfunktion Fourierreihe < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenfunktion Fourierreihe: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:45 Mi 30.04.2014
Autor: racy90

Hallo

Ich habe folgendes Randwertproblem gelöst:

y''+w^2y=0  [mm] y'(0)=y'(\pi)=0 [/mm]

Als Eigenfunktion bekomme ich   C1cos(nx)


Die auf [mm] [0,\pi] [/mm] definierte Funktion soll ich  in eine Fourierreihe bezüglich der Eigenfunktion des Randwertproblems entwickeln.
f(x)= 1 für 0 [mm] \le [/mm] x [mm] \le \pi/2 [/mm]
        0 für [mm] \pi/2 \le [/mm] x [mm] \e \pi [/mm]

Da ich den Teil wo f(x) =0 weglassen kann. Habe ich mich f(x)=1 gewidmet.

Die Fourierkoeff. bekomme ich nun durch folgende Aktion:

[mm] \bruch{\integral_{0}^{\pi}{f(x)*cos(nx) dx}}{\integral_{0}^{\pi}{cos(nx)^2 dx}} [/mm]

das erste Integral [mm] :\integral_{0}^{\pi}{1*cos(nx) dx} [/mm] = [mm] \bruch{sin(\pi n}{n} [/mm]  .Nur liegt dann genau hier mein Problem weil sowohl für n gerade als auch für n ungerade =0

das 2. Integral  [mm] \integral_{0}^{\pi}{cos(nx)^2 dx}= \pi/2 [/mm]

        
Bezug
Eigenfunktion Fourierreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:15 Fr 02.05.2014
Autor: racy90

Hat keiner eine Hilfestellung für mich?

Bezug
        
Bezug
Eigenfunktion Fourierreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:25 Fr 02.05.2014
Autor: wauwau

Bitte deine Aufgabe und deine Fragestellung in ganzen sätzen formulieren

z.B. Nun muss ich die ..... - ohne Prädikat!

Bezug
        
Bezug
Eigenfunktion Fourierreihe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 So 04.05.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]