E-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Hallo Leute,
ich habe hier eine E-Funktion, von der ich die Nullstelle(n) berechnen soll:
f(x)= x*e^(-2x)+2
Erst einmal hab ich die Gleichung Null gesetzt. Dann komm ich aber nicht weiter! Bitte um Hilfe
LG
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:26 Fr 29.10.2010 | Autor: | leduart |
Hallo
Die Gleichung kannst du nicht lösen, nur mit Näherungsverfahren.
du kannst leicht fesstellen, dass die Nst. zw. x=0 und x=-1 liegt, bie x=0 ist f>0 bei x=-1 ist f<0
Gruss leduart
|
|
|
|
|
Das Näherungsverfahren kenne ich leider (noch) nicht! Wie macht man das denn genau? Ich hab schon gegoogelt, hab es aber nicht verstanden. Kann mir das vielleicht jemand an meiner Aufgabe erklären?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:29 Fr 29.10.2010 | Autor: | leduart |
Hallo
Wenn du auf der Schule bist, und kein Näherungserfahren hattest musst du das auch nicht.
Das was man am einfachsten versteht, ist die sog. Regula falsi.
Du suchst 2 Werte, wo die fkt verschieden Vorzeichen hat.
zbsp hier f(0)=2>0 [mm] f(-1)=-2e^2+2<0
[/mm]
der Wert muss dazwischen liegen, also nimm -0.5 f(-0.5)>0 also zwischen -0.5 und -1 also dazwischen f(-0,75)<0 also zw.-0.5 und -0.75 f(0.625) usw. bis du die Nst auf 2 Stellen genau hast.
Dei bessere Methode heisst Newtonverfahren. Wenn du die lernen willst geh zu
http://www.arndt-bruenner.de/mathe/java/newton.htm
Dort wird es erklärt, und du kannst sogar deine fkt eingeben.
dabei [mm] e^{-2x} [/mm] als exp(-2*x) eingeben.
Gruss leduart
|
|
|
|
|
Danke erst einmal für deine Mühe! Trotzdem versteh ich das einfachere Verfahren nicht...Kannst du das vielleicht noch mal etwas genauer erklären?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:45 Fr 29.10.2010 | Autor: | Sierra |
Hallo,
bei x=-1 ist die Funktion f<0 und bei x=0 ist f>0, deshalb liegt die Nullstelle zwischen 0 und 1.
Die Mitte von -1 und 0 ist -0,5.
Bei x=-0,5 ist f>0
Da die f<0 ist bei x=-1 und f>0 bei x=-0,5 muss die Nullstelle zwischen -1 und -0,5 liegen.
Die Mitte von -1 und -0,5 ist -0,75
Bei x=-0,75 ist f<0, bei x=-0,5 war f>0, also muss die Nullstelle zwischen -0,75 und -0,5 liegen.
Die Mitte von -0,75 und -0,5 ist -0,625
und nun bist du dran ;)
Hoffe, dass das anschaulicher für dich ist.
Gruß Sierra
|
|
|
|
|
Vielen herzlichen Dank, jetzt habe ich es ganz gut verstanden! Wenn du mir noch bei dieser Aufgabe helfen könntest, wäre es super!
Also ich hab die erste Ableitung der beschriebenen Funktion herausbekommen. Sie lautet: f'(x)= e^(-2x)* (x-1)
Wie kann ich denn diese Funktion nach x auflösen?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:15 Sa 30.10.2010 | Autor: | glie |
> Vielen herzlichen Dank, jetzt habe ich es ganz gut
> verstanden! Wenn du mir noch bei dieser Aufgabe helfen
> könntest, wäre es super!
> Also ich hab die erste Ableitung der beschriebenen Funktion
> herausbekommen. Sie lautet: f'(x)= e^(-2x)* (x-1)
Hallo,
zwei Fragen drängen sich mir auf:
1. Wie kommst du auf die Ableitung? Die ist nicht korrekt. Zusätzlich zur Produktregel musst du bei der Ableitung des Terms [mm] $e^{-2x}$ [/mm] ja auch noch die Kettenregel beachten.
2. Du meinst sicher, wie du die Gleichung $f'(x)=0$ nach x auflösen kannst?
Wenn du jetzt deine Ableitung korrigierst, dann ist ein guter Anfang:
Ein Produkt ergibt Null, wenn einer der Faktoren Null ist.
Gruß Glie
>
> Wie kann ich denn diese Funktion nach x auflösen?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:28 Sa 30.10.2010 | Autor: | leduart |
Hallo
zitiere meine Erklärungen, sag genau, was du daran nicht verstehst!Wie soll ich sonst wissen wo es hakt. Und sag bitte - am besten in deinem profil- welches dein Vorwissen ist. 11. Klasse ? Schule 1. Semester Maschinen bau oder was auch immer.
Gruss leduart
|
|
|
|
|
> Hallo
> Wenn du auf der Schule bist, und kein Näherungserfahren
> hattest musst du das auch nicht.
> Das was man am einfachsten versteht, ist die sog. Regula
> falsi.
> Du suchst 2 Werte, wo die fkt verschieden Vorzeichen hat.
> zbsp hier f(0)=2>0 [mm]f(-1)=-2e^2+2<0[/mm]
> der Wert muss dazwischen liegen, also nimm -0.5 f(-0.5)>0
> also zwischen -0.5 und -1 also dazwischen f(-0,75)<0 also
> zw.-0.5 und -0.75 f(0.625) usw. bis du die Nst auf 2
> Stellen genau hast.
Dieses Verfahren ist nicht die Regula falsi, sondern das
Intervallhalbierungsverfahren.
> Die bessere Methode heisst Newtonverfahren.
Das Newtonverfahren ist eine von verschiedenen Methoden, die
in Frage kommen.
> Wenn du die lernen willst geh zu
> http://www.arndt-bruenner.de/mathe/java/newton.htm
> Dort wird es erklärt, und du kannst sogar deine fkt
> eingeben.
> dabei [mm]e^{-2x}[/mm] als exp(-2*x) eingeben.
> Gruss leduart
LG Al-Chw.
|
|
|
|
|
Sorry, ich hab mich vertan! Die erste Ableitung lautet f'(x)= e^(-2x)-2xe^(-2x)
So, wie löse ich diese Gleichung jetzt auf? Bitte um Hilfe!
Achja, noch eine Frage: Ist die zweite Ableitung: f''(x)= -4e^(-2x)+4e^(-2x)
|
|
|
|
|
Ja, genau, ich will die Gleichung gleich Null setzen. Habe ich das richtig ausgeklammert?
0= e^(-2x)*(x-1) Aber ich weiß nicht, wie man durch den Term teilen soll...Wie mache ich das konkret?
Und die zweite Ableitung lautet: f''(x)= -4e^(-2x)+4xe^(-2x)
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:36 Sa 30.10.2010 | Autor: | leduart |
Hallo
du hattest richtig
[mm] f'(x)=e^{-2x}-2x*e^{-2x}
[/mm]
dein ausgeklammerter Ausdruck ist falsch, immer zur probe wieder Ausmult. um Fehler zu merken
Wenn man hat (ein Ausdruck)*(anderer Ausdruck)=0
also a*b=0 dann weiss man dass das richtig ist, wenn a=0 oder wenn b=0 oder wenn beide =0 [mm] e^{-2x} [/mm] ist nie null, also muss die Klammer 0 sein.
Dein f'' ist richtig
Gruss leduart
|
|
|
|
|
Okay, gut, ich geb emich geschlagen...Kann mir irgendjemand sagen, wie man f'(x)= e^(-2x)-2xe^(-2x) ausklammert?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:03 Sa 30.10.2010 | Autor: | Pappus |
Guten Abend!
> Okay, gut, ich geb emich geschlagen...Kann mir irgendjemand
> sagen, wie man f'(x)= e^(-2x)-2xe^(-2x) ausklammert?
1. Ausklammern bedeutet, dass ich aus einer Summe einen gemeinsamen Faktor "herausziehe". Der Faktor kommt vor die Klammer und in der Klammer stehen die Ergebnisse der Division der einzelnen Summanden durch den Faktor. Da das jetzt sicherlich wie Kisuaheli rückwärts klingt, hier ein Beispiel:
2. [mm] $2x-4x^2+6x^3$ [/mm] Es soll der Faktor 2x ausgeklammert werden:
[mm] $2x-4x^2+6x^3 [/mm] = 2x [mm] \cdot \left( \dfrac{2x}{2x}-\dfrac{4x^2}{2x}+\dfrac{6x^3}{2x} \right)$
[/mm]
Jetzt erst die Summanden in der Klammer vereinfachen. (Übrigens nur dass kein Missverständnis aufkommt [mm] $\dfrac{2x}{2x} \neq [/mm] 0$ )
3. Jetzt dieses Verfahren auf Deinen Funtionsterm anwenden.
Salve
Pappus
|
|
|
|
|
Danke für die Mühe, aber das hilft mir gar nicht! Ich WEIß, was Ausklammern bedeutet und wie das funktioniert, nur kann ich das nicht mit meiner Funktion!!! Ich hab hier meine Funktion: f'(x)= e^(-2x)-2xe^(-2x)
Hier kann man e^(-2x) vor die Klammer setzen, da bin ich mir sicher! Aber was kommt in die Klammer? (x-1) ist falsch, wie mir gesagt wurde!
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:21 Sa 30.10.2010 | Autor: | moody |
> Danke für die Mühe, aber das hilft mir gar nicht! Ich
> WEIß, was Ausklammern bedeutet und wie das funktioniert,
> nur kann ich das nicht mit meiner Funktion!!! Ich hab hier
> meine Funktion: f'(x)= e^(-2x)-2xe^(-2x)
> Hier kann man e^(-2x) vor die Klammer setzen, da bin ich
> mir sicher! Aber was kommt in die Klammer? (x-1) ist
> falsch, wie mir gesagt wurde!
$f'(x)= [mm] e^{-2x}-2xe^{-2x}$
[/mm]
Du möchtest [mm] e^{-2x} [/mm] ausklammern.
$f'(x)= [mm] e^{-2x}(1-2x)$
[/mm]
weil
$f'(x)= [mm] e^{-2x}*1 [/mm] - [mm] e^{-2x}*2*x$
[/mm]
In die Klammern kommen die Faktoren mit denen man den ausgeklammerten Term multiplizieren muss um wieder auf die Ausgangssumme zu kommen.
Bei deinem Lösungsvorschlag [mm] $(x_{}-1)$
[/mm]
wäre man ja auf $f'(x)= [mm] e^{-2x}*x [/mm] - [mm] e^{-2x}*1$
[/mm]
[mm] \gdw [/mm] $f'(x)= [mm] e^{-2x}x [/mm] - [mm] e^{-2x}$ [/mm] gekommen.
lg moody
|
|
|
|
|
Danke danke, jetzt hab ichs verstanden :)
|
|
|
|