Dividierte Differenzen < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 15:38 Do 13.01.2011 | Autor: | dennis2 |
Aufgabe | Sei f eine n-mal stetige Funktion und [mm] x_0 \in \IR. [/mm] Betrachten Sie eine Folge von paarweise verschiedenen Stützpunkten [mm] x_1^{(j)},...,x_n^{(j)}, [/mm] j=0,1,2,... mit [mm] x_i^{(j)}\to x_0 [/mm] für [mm] j\to \infty. [/mm] Es bezeichne [mm] P_n^{(j)} [/mm] das Interpolationspolynom, welches f an den Stützstellen [mm] x_0,x_1^{(j)},...,x_n^{(j)} [/mm] interpoliert.
Untersuchen Sie den Grenzwert der Folge von Interpolationspolynomen [mm] P_n^{(j)}für j\to \infty.
[/mm]
Hinweis: Für die "Dividierten Differenzen" gilt:
[mm] [f_0,...,f_i]=\bruch{1}{i!}f^{(i)}(\zeta_i^{(j)}) [/mm]
mit [mm] \min\left\{x_0,x_1^{(j)},...,x_n^{(j)}\right\}<\zeta_i^{(j)}<\max\left\{x_0,x_1^{(j)},..,x_n^{(j)}\right\}. [/mm] |
Ich habe nur sehr wenig bisher zu Wege gebracht.
Da im Hinweis etwas von "Dividierten Differenzen" steht, bin ich jetzt mal davon ausgegangen, dass man die Newton´sche Interpolationsformel heranziehen muss:
[mm] P_{0...n}^{(j)}(x_i^{(j)})=\summe_{i=0}^{n}[f_0,...,f_i]\produkt_{k=0}^{i-1}(x_i^{(j)}-x_k^{(j)}) [/mm]
Und mit dem Hinweis habe ich dann:
[mm] P_{0...n}^{(j)}(\zeta_i^{(j)})=\summe_{i=0}^{n}\bruch{f^{(i)}(\zeta_i^{(j)})}{i!}\produkt_{k=0}^{i-1}(\zeta_i^{(j)}-x_k^{(j)}) [/mm]
Wenn ich den Hinweis richtig verstanden habe, ist [mm] \zeta_i^{(j)} [/mm] ein Folgenglied der Folge von verschiedenen Stützstellen. Das bedeutet doch aber, dass [mm] \zeta_i^{(j)}\to x_0 [/mm] für [mm] j\to \infty. [/mm] Und da in jeder Multiplikation der Faktor [mm] (\zeta_i^{(j)}-x_0) [/mm] steht, strebt das doch dann gegen Null.
Ich würde daher sagen, dass der Grenzwert der Folge von Interpolationspolynomen gegen 0 strebt für [mm] j\to \infty.
[/mm]
Ich würde mich sehr (!) freuen, wenn mir jemand irgendwie behilflich sein kann!
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:28 Do 13.01.2011 | Autor: | dennis2 |
Aufgabe | Hat jemand einen Ansatz für mich, denn meiner ist - glaube ich - verkehrt. Aber ich komme auf keinen anderen Ansatz. |
Wäre sehr nett! Komme nicht weiter.
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 21:29 Do 13.01.2011 | Autor: | dennis2 |
Aufgabe | Ich habe nochmal ein bisschen rumprobiert: |
[mm] P_{0,...,n}(x)=\summe_{i=0}^{n}[f_0,...,f_i]\produkt_{k=1}^{i-1}(x-x_k)=\summe_{i=0}^{n}\bruch{f^{(i)}(\zeta_i^{(j)})}{i!}\produkt_{k=0}^{i-1}(x-x_k) [/mm] laut dem Hinweis in der Aufgabenstellung [korrekterweise hätte ich für die Stützpunkte statt [mm] x_k [/mm] eigentlich [mm] x_i^{(j)} [/mm] schreiben müssen, aber das finde ich sehr unübersichtlich, deswegen habe ichs weggelassen.]
Weiter gilt:
[mm] \summe_{i=0}^{n}\bruch{f^{(i)}(\zeta_i^{(j)})}{i!}\produkt_{k=0}^{i-1}(x-x_k)<\summe_{i=0}^{n}f^{(i)}(\zeta_i^{(j)})\produkt_{k=1}^{i-1}(x-x_k)
[/mm]
Geht nun [mm] j\to \infty, [/mm] so (würde ich sagen) gehen ja die ganzen Stützstellen gegen [mm] x_0, [/mm] d.h. das Produkt auf der rechten Seite ändert sich und außerdem folgt dann wegen
[mm] \min\{x_0,x_1^{(j)},...,x_i^{(j)}\}=\min\{x_0\}=x_0 [/mm] für [mm] j\to \infty
[/mm]
[ebenso: [mm] max\{x_0\}=x_0 [/mm] für [mm] j\to \infty],
[/mm]
dass [mm] \zeta=x_0 [/mm] für [mm] j\to \infty [/mm] [da [mm] x_0<\zeta
Deswegen gilt weiter:
[mm] \summe_{i=0}^{n}f^{(i)}(\zeta_i^{(j)})\produkt_{k=1}^{i-1}(x-x_k)\to \summe_{i=0}^{n}f^{(i)}(x_0)(x-x_0)^{i-1} [/mm] für [mm] j\to \infty
[/mm]
Also [mm] \limes_{j\rightarrow\infty}P_n^{(j)}=\summe_{i=0}^{n}f^{(i)}(x_0)(x-x_0)^{i-1}
[/mm]
Ich würde deswegen sagen, dass so der Grenzwert aussieht.
Ich habe KEINE Ahnung, ob das nicht evtl. totaler Blödsinn ist, aber da ich bisher keine Hilfestellungen hier bekommen habe, hab ich einfach mal losgelegt, nachdem ich gemerkt habe, dass mein erster Ansatz jedenfalls falsch war.
Ich bitte nochmal um Hilfe.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:20 Sa 15.01.2011 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:20 Sa 15.01.2011 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|