Diskriminante < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:00 Mi 20.10.2010 | Autor: | Arcesius |
Aufgabe | Sei [mm]F[/mm] ein Körper der Charakteristik 0 und [mm]K[/mm] eine endliche Körpererweiterung von [mm]F[/mm]. Falls [mm]x \in K[/mm] mit [mm]K = F(x)[/mm] das [mm]F[/mm]-Minimalpolynom [mm]P = T^{d} + a_{1}T^{d-1} + \cdots + a_{d}[/mm] besitzt, zeige:
[mm]\triangle_{K/F}(1,x,...,x^{d-1}) = (-1)^{\frac{d(d-1)}{2}\prod\limits_{P(y) = 0}{P'(x)}[/mm]
Hier durchläuft [mm]y[/mm] alle Nullstellen von [mm]P[/mm] in einem algebraisch abgeschlossenen Körper welcher [mm]F[/mm] enthälgt und [mm]P' \in F\left[T\right][/mm] die Ableitung von P. |
Hallo Forum!
Ich habe einige Zeit an dieser Aufgabe verbracht. Ich weiss, es wird schliesslich auf eine Vandermonde-Determinante hinauslaufen.. nur schaffe ich den Weg dorthin nicht. Ich hab eigentlich nicht wirklich eine Idee, wie ich alles was mir gegeben ist ins Spiel bringen kann..
Die Definition der Diskriminante als Determinante der Spurmatrix bringt hier wohl nichts.. Eher werde ich wohl die Definition als Determinante im Quadrat der Einbettungen im algebraisch abgeschlossenen Körper anwenden müssen.. aber da bin ich nicht ganz sicher wie ich das zu machen habe..
Kann mich jemand anstubsen? Brauche nur deinen kleinen Stoss, dann geht das schon :)
Grüsse, Amaro
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:57 Do 21.10.2010 | Autor: | felixf |
Moin!
> Sei [mm]F[/mm] ein Körper der Charakteristik 0 und [mm]K[/mm] eine endliche
> Körpererweiterung von [mm]F[/mm]. Falls [mm]x \in K[/mm] mit [mm]K = F(x)[/mm] das
> [mm]F[/mm]-Minimalpolynom [mm]P = T^{d} + a_{1}T^{d-1} + \cdots + a_{d}[/mm]
> besitzt, zeige:
>
> [mm]\triangle_{K/F}(1,x,...,x^{d-1}) = (-1)^{\frac{d(d-1)}{2}\prod\limits_{P(y) = 0}{P'(x)}[/mm]
>
> Hier durchläuft [mm]y[/mm] alle Nullstellen von [mm]P[/mm] in einem
> algebraisch abgeschlossenen Körper welcher [mm]F[/mm] enthälgt und
> [mm]P' \in F\left[T\right][/mm] die Ableitung von P.
>
>
> Hallo Forum!
>
> Ich habe einige Zeit an dieser Aufgabe verbracht. Ich
> weiss, es wird schliesslich auf eine
> Vandermonde-Determinante hinauslaufen.. nur schaffe ich den
> Weg dorthin nicht. Ich hab eigentlich nicht wirklich eine
> Idee, wie ich alles was mir gegeben ist ins Spiel bringen
> kann..
>
> Die Definition der Diskriminante als Determinante der
> Spurmatrix bringt hier wohl nichts.. Eher werde ich wohl
> die Definition als Determinante im Quadrat der Einbettungen
> im algebraisch abgeschlossenen Körper anwenden müssen..
> aber da bin ich nicht ganz sicher wie ich das zu machen
> habe..
>
> Kann mich jemand anstubsen? Brauche nur deinen kleinen
> Stoss, dann geht das schon :)
Also. Seien [mm] $\alpha_1, \dots, \alpha_d$ [/mm] alle Nullstellen von $P$ in einem alg. Abschluss von $K$. Dann ist [mm] $\Delta_{K/F}(1, [/mm] x, [mm] x^2, \dots, x^{d-1}) [/mm] = [mm] \left( \det \pmat{ 1 & 1 & \cdots & 1 \\ \alpha_1 & \alpha_2 & \cdots & \alpha_d \\ \alpha_1^2 & \alpha_2^2 & \cdots & \alpha_d^2 \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{d-1} & \alpha_2^{d-1} & \cdots & \alpha_d^{d-1} } \right)^2$.
[/mm]
Weiterhin ist [mm] $P'(\alpha_i) [/mm] = [mm] \prod_{j \neq i} (\alpha_i [/mm] - [mm] \alpha_j)$.
[/mm]
Kommst du damit weiter?
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:16 Do 21.10.2010 | Autor: | Arcesius |
Hey Felix
Danke für den Ansatz. Ich werde es jetzt damit versuchen, das sollte eigentlich gehen.. sieht nicht weit entfernt aus von der tatsächlichen Lösung.. :)
Sonst melde ich mich nochmals!
Liebe Grüsse,
Amaro
|
|
|
|