www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Dimension von Körpern
Dimension von Körpern < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension von Körpern: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:29 Mi 18.11.2009
Autor: matt101

Aufgabe
Seinen [mm] K_{1}\subseteq K_{2} \subseteq K_{3} [/mm] Körper.
Zeigen sie:
     [mm] dim_{K_{1}}(K_{3}) [/mm] = [mm] dim_{K_{2}}(K_{3}) dim_{K_{1}}(K_{2}) [/mm]

wobei [mm] dim_{K}(V) [/mm] bedeutet die Dimension von V über dem Körper K.

Ich weiß dass ein Körper einen Vektorraum über sich selbst ist, aber irgendwie komme ich mit diesen Dimensionen über unterschiedliche Körpern nicht klar.

Kann mir das jemand vielleicht veranschaulichen oder einen Tipp geben?


Danke!

        
Bezug
Dimension von Körpern: Antwort
Status: (Antwort) fertig Status 
Datum: 11:43 Mi 18.11.2009
Autor: felixf

Hallo!

> Seinen [mm]K_{1}\subseteq K_{2} \subseteq K_{3}[/mm] Körper.
> Zeigen sie:
> [mm]dim_{K_{1}}(K_{3})[/mm] = [mm]dim_{K_{2}}(K_{3}) dim_{K_{1}}(K_{2})[/mm]
>  
> wobei [mm]dim_{K}(V)[/mm] bedeutet die Dimension von V über dem
> Körper K.

Zeige zuerst: ist eine der Dimensionen auf der rechten Seite unendlich, so ist auch die auf der linken Seite unendlich.

Dann nimm an, die beiden auf der rechten Seite sind endlich. Waehle eine Basis [mm] $v_1, \dots, v_n$ [/mm] von [mm] $K_2$ [/mm] ueber [mm] $K_1$ [/mm] und eine Basis [mm] $w_1, \dots, w_m$ [/mm] von [mm] $K_3$ [/mm] ueber [mm] $K_2$. [/mm]

Zeige dann, dass [mm] $v_1 w_1, \dots, v_1 w_m, v_2 w_1, \dots, v_2 w_m, \dots, v_n w_m$ [/mm] eine Basis von [mm] $K_3$ [/mm] ueber [mm] $K_1$ [/mm] ist: zeige erst, dass es ein Erzeugendensystem ist, dann, dass es linear unabhaengig ist.

>  Ich weiß dass ein Körper einen Vektorraum über sich
> selbst ist, aber irgendwie komme ich mit diesen Dimensionen
> über unterschiedliche Körpern nicht klar.
>
> Kann mir das jemand vielleicht veranschaulichen oder einen
> Tipp geben?

Schau dir mal den Koerperturm [mm] $K_3 [/mm] = [mm] \IQ(\sqrt[4]{2})$, $K_2 [/mm] = [mm] \IQ(\sqrt{2})$, $K_1 [/mm] = [mm] \IQ$ [/mm] an. Dann ist [mm] $K_2 [/mm] = [mm] K_1 \oplus K_1 \sqrt{2}$, [/mm] hat also Dimension 2 ueber [mm] $K_1$. [/mm] Weiterhin ist [mm] $K_3 [/mm] = [mm] K_1 \oplus \sqrt[4]{2} K_1 \oplus \sqrt{2} K_1 \oplus \sqrt[4]{2}^3 K_1$, [/mm] hat also Dimension 4 ueber [mm] $K_1$. [/mm] Schliesslich ist [mm] $K_3 [/mm] = [mm] K_2 \oplus \sqrt[4]{2} K_2$, [/mm] hat also Dimension 2 ueber [mm] $K_2$. [/mm]

Schreib dir mal auf, wie die Koerper genau aussehen, und warum diese Gleichheiten stimmen.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]