www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Dimension
Dimension < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:25 Sa 25.11.2006
Autor: roadrunnerms

nur ma eine kleine verständisfrage:

wieso kann ich denn sagen dass:

falls U [mm] \subset [/mm] V ein endlich erzeugter unterraum ist
-> dim f(U) [mm] \le [/mm] dim (U)

also warum es = ist versteh ich ja, aber warum [mm] \le [/mm]

        
Bezug
Dimension: Antwort
Status: (Antwort) fertig Status 
Datum: 20:35 Sa 25.11.2006
Autor: SEcki


> falls U [mm]\subset[/mm] V ein endlich erzeugter unterraum ist
> -> dim f(U) [mm]\le[/mm] dim (U)
>  
> also warum es = ist versteh ich ja, aber warum [mm]\le[/mm]  

??? Also = ist doch i.a. falsch. Das folgt doch sofort daraus, das [m]f(U)\subset f(V)[/m] ist.

SEcki

Bezug
                
Bezug
Dimension: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:49 Sa 25.11.2006
Autor: roadrunnerms

warum is es jetzt:
falls U [mm]\subset[/mm] V ein endlich erzeugter unterraum ist
-> dim f(U) [mm]\le[/mm] dim (U)

ich würde es nämlich gern mal verstehn, warum ddie dimension des Bildes auch kleiner seien kann.


Bezug
                        
Bezug
Dimension: Antwort
Status: (Antwort) fertig Status 
Datum: 23:33 Sa 25.11.2006
Autor: SEcki


> ich würde es nämlich gern mal verstehn, warum ddie
> dimension des Bildes auch kleiner seien kann.

Mach was mit [m]U=\{0\}[/m] zB ...

SEcki

Bezug
                                
Bezug
Dimension: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:33 So 26.11.2006
Autor: roadrunnerms

also ich verstehe, dass die dim U [mm] \le [/mm] dim V ist
=> müsste doch folgen, dass dim f(U) [mm] \le [/mm] dim f(V) oder??

aber ich komme nicht drauf, warum dim f(U) [mm] \le [/mm] dim U sein soll

weil dim V = dim (ker f) + rg f      dies ist ja die rangformel
und          =         dim f(V)   oder??
oder bezieht sich dim f(V) nur auf rg f , dann wars mir klar

U müsste ja dann analog sein

Bezug
                                        
Bezug
Dimension: Antwort
Status: (Antwort) fertig Status 
Datum: 11:44 So 26.11.2006
Autor: SEcki


> aber ich komme nicht drauf, warum dim f(U) [mm]\le[/mm] dim U sein
> soll

Hups, falsch gelesen. (Du solltest mal umbedingt den Formeleditior verwenden.)

Da f eingeschränkt auf U wieder linear ist, so kann man den Rangsatz anwenden. Daraus folgt das dann, auch das = nicht gelten muss - wähle ein geeignetes f.

SEcki

Bezug
                                                
Bezug
Dimension: rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:55 So 26.11.2006
Autor: roadrunnerms

also ist      dim f(U)    nur der      rg f    ohnen die dimension vom kern
und deshalb kann          dim f(U) [mm] \le [/mm] dim U        sein

was für ein f könnt ich mir denn wählen, damit mir es klar wird??

also schonmal danke für deine hilfe

Bezug
                                                        
Bezug
Dimension: Antwort
Status: (Antwort) fertig Status 
Datum: 11:59 So 26.11.2006
Autor: Martin243

Hallo,

nimm doch z.B. $f: [mm] \IR^3 \rightarrow \IR^3, f(\vec{x}) [/mm] = [mm] A\vec{x}$ [/mm] mit:
$A = [mm] \pmat{1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 0}$. [/mm]

Hier lassen sich Kern und Bild sowie ihre Dimesnionen leicht berechnen.


Gruß
Martin

Bezug
                                        
Bezug
Dimension: Antwort
Status: (Antwort) fertig Status 
Datum: 11:55 So 26.11.2006
Autor: Martin243

Hallo,

unsere Rangformel hieß "Dimensionsformel für lineare Abildungen" und lautete:
[mm] $\dim [/mm] U = [mm] \dim [/mm] Kern(f) + [mm] \dim [/mm] Bild(f)$

Wir haben zwischen einer Matrix und der durch sie induzierten Abbildung unterschieden, so dass wir auch nie den Rang von f, sondern nur die Dimension des Bildes von f berechnet haben.
Es ist tatsächlich $f(U) = Bild(f)$.


Gruß
Martin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]