www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichungen
Differentialgleichungen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:40 So 06.01.2013
Autor: zitrone

Hallo!

Ich hab folgende Differenzialgleichung bekommen:

[mm] \bruch{dy}{dx}=y'(x)=\bruch{1}{x} *\wurzel{y(x)} [/mm]

[mm] \bruch{dy}{dx}=\bruch{1}{x} *\wurzel{y(x)} [/mm]

[mm] =\bruch{1}{*\wurzel{y(x)}}*dy =\bruch{1}{x} [/mm] *dx

[mm] =\integral_{}^{}{}\bruch{1}{*\wurzel{y(x)}}*dy=\integral_{}^{}{}\bruch{1}{x} [/mm] *dx

= [mm] ln(\wurzel{y(x)}) [/mm] * dy = ln(x)*dx | e^()

= [mm] \wurzel{y(x)} [/mm] = C*x


...und komme bei dem letzten Punkt nicht weiter und wollte daher fragen, ob jemand davon eine Ahnung hat und mir bitte weiterhelfen könnte!:/

LG zitrone

        
Bezug
Differentialgleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:48 So 06.01.2013
Autor: MathePower

Hallo zitrone,

> Hallo!
>  
> Ich hab folgende Differenzialgleichung bekommen:
>  
> [mm]\bruch{dy}{dx}=y'(x)=\bruch{1}{x} *\wurzel{y(x)}[/mm]
>  
> [mm]\bruch{dy}{dx}=\bruch{1}{x} *\wurzel{y(x)}[/mm]
>  
> [mm]=\bruch{1}{*\wurzel{y(x)}}*dy =\bruch{1}{x}[/mm] *dx
>  
> [mm]=\integral_{}^{}{}\bruch{1}{*\wurzel{y(x)}}*dy=\integral_{}^{}{}\bruch{1}{x}[/mm]
> *dx
>
> = [mm]ln(\wurzel{y(x)})[/mm] * dy = ln(x)*dx | e^()
>


Hier stimmt es schon nicht mehr.

[mm]\integral_{}^{}{}\bruch{1}{\wurzel{y}}*dy=2*\wurzel{y}[/mm]


> = [mm]\wurzel{y(x)}[/mm] = C*x
>  
>
> ...und komme bei dem letzten Punkt nicht weiter und wollte
> daher fragen, ob jemand davon eine Ahnung hat und mir bitte
> weiterhelfen könnte!:/
>
> LG zitrone


Gruss
MathePower

Bezug
                
Bezug
Differentialgleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:54 So 06.01.2013
Autor: zitrone

Hallo MathePower,

vielen Dank für die schnelle Antwort!!


>  >  
> > Ich hab folgende Differenzialgleichung bekommen:
>  >  
> > [mm]\bruch{dy}{dx}=y'(x)=\bruch{1}{x} *\wurzel{y(x)}[/mm]
>  >  
> > [mm]\bruch{dy}{dx}=\bruch{1}{x} *\wurzel{y(x)}[/mm]
>  >  
> > [mm]=\bruch{1}{*\wurzel{y(x)}}*dy =\bruch{1}{x}[/mm] *dx
>  >  
> >
> [mm]=\integral_{}^{}{}\bruch{1}{*\wurzel{y(x)}}*dy=\integral_{}^{}{}\bruch{1}{x}[/mm]
> > *dx
> >
> > = [mm]ln(\wurzel{y(x)})[/mm] * dy = ln(x)*dx | e^()
>  >

>
>
> Hier stimmt es schon nicht mehr.
>  
> [mm]\integral_{}^{}{}\bruch{1}{\wurzel{y}}*dy=2*\wurzel{y}[/mm]


Ich bin etwas verwirrt... wieso ist das von x plötzlich beim y weg? Und erkenne ich nicht, wieso rechts eine 2 hinkommen muss...://



> > = [mm]\wurzel{y(x)}[/mm] = C*x
>  >  
> >
> > ...und komme bei dem letzten Punkt nicht weiter und wollte
> > daher fragen, ob jemand davon eine Ahnung hat und mir bitte
> > weiterhelfen könnte!:/
> >
> > LG zitrone
>
>
> Gruss
>  MathePower


Bezug
                        
Bezug
Differentialgleichungen: Anmerkung
Status: (Antwort) fertig Status 
Datum: 16:58 So 06.01.2013
Autor: Loddar

Hallo zitrone!


Mathepoewer hat lediglich die falsche Stammfunktion auf der linken Seite der Gleichung angemerkt.

Es gilt:

[mm] $\integral{\bruch{1}{\wurzel{y}} \ dy} [/mm] \ = \ [mm] \integral{\bruch{1}{x} \ dx}$ [/mm]

[mm] $2*\wurzel{y} [/mm] \ = \ [mm] \ln|x|+c$ [/mm]


Gruß
Loddar


Bezug
                                
Bezug
Differentialgleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:23 So 06.01.2013
Autor: zitrone

Hallo Loddar!

Ach jetzt versteh ich das..Jetzt eine doofe Frage: Wie kommt es denn, dass es nicht ln(y) ist?:/

LG zitrone

Bezug
                                        
Bezug
Differentialgleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:28 So 06.01.2013
Autor: MathePower

Hallo zitrone,

> Hallo Loddar!
>  
> Ach jetzt versteh ich das..Jetzt eine doofe Frage: Wie
> kommt es denn, dass es nicht ln(y) ist?:/
>  


Weil im Nenner [mm]\wurzel{y}[/mm] steht.


> LG zitrone


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]