www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Differentialgeometrie
Differentialgeometrie < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgeometrie: Frage zu einer Aufgabe
Status: (Frage) überfällig Status 
Datum: 12:33 Mi 20.09.2017
Autor: Zac9908

Aufgabe
Sei $S$ eine reguläre Fläche ohne Nabelpunkte. Beweise, daß $S$ genau dann eine Minimalfläche ist wenn die Gauß-Abbildung $N: [mm] S\rightarrow S^2$ [/mm] für alle [mm] $w_1,w_2 \in T_p [/mm] (S)$ die Gleichung

[mm] $\langle dN_p(w_1),dN_p(w_2)\rangle [/mm] = [mm] \lambda(p) \langle w_1,w_2\rangle$ [/mm]

erfüllt, wobei [mm] $\lambda(p) \neq [/mm] 0 $ eine Zahl ist die nur von p abhängt.

Ich habe keine Ahnung wie die Rückrichtung geht, also wie man zeigt, dass aus der Gleichung folgt, dass S eine Minimalfläche ist. Jemand eine Idee? Danke!

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://matheplanet.com/default3.html?call=forum.php?noop=0&ref=https%3A%2F%2Fwww.google.de%2F

        
Bezug
Differentialgeometrie: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Sa 23.09.2017
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]