www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Differentialformen
Differentialformen < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialformen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:45 Do 22.04.2010
Autor: Baumkind

Aufgabe
Seien $f(x,y) [mm] dx\wedge [/mm] dy$ und $ g(z) dz$ Differentialformen auf der 2-Sphäre.
Sind die Differentialformen gleich?

Hi.

Also meine Überlegung war, dass sie nicht gleich sein können, weil
$f(x,y) [mm] dx\wedge [/mm] dy$ eine 2-Form ist und $ g(z) dz$ eine 1-Form.
Liege ich damit richtig?
Lg

        
Bezug
Differentialformen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:31 Do 22.04.2010
Autor: SEcki


> Seien [mm]f(x,y) dx\wedge dy[/mm] und [mm]g(z) dz[/mm] Differentialformen auf
> der 2-Sphäre.

Was sind x,y,z? Ist z eine komplexe Diff.form? Was ist f, was ist g?

> Also meine Überlegung war, dass sie nicht gleich sein
> können, weil
> [mm]f(x,y) dx\wedge dy[/mm] eine 2-Form ist und [mm]g(z) dz[/mm] eine
> 1-Form.
>  Liege ich damit richtig?

Oder Erklärung der Buchstaben - wer weiß ...

SEcki


Bezug
                
Bezug
Differentialformen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:08 Fr 23.04.2010
Autor: Baumkind

Entschuldige meine Ungenauigkeit. Ich werde das jetzt präzisieren:
[mm] $S^2=\{ \vektor{x \\ y\\z} : x^2+y^2+z^2=1\}$ [/mm]
Die gegebenen Differentialformen sind $ [mm] x\cdot [/mm] y dx [mm] \wedge [/mm] dy$ und $ z [mm] \wedge [/mm] dz$.
Sie sollen auf Gleichheit untersucht werden.
Meine Antwort ist, dass sie nicht gleich sind, weil ersteres eine 2-Form ist und letzteres eine 1-Form.

Bezug
                        
Bezug
Differentialformen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:44 Fr 23.04.2010
Autor: SEcki


> Sie sollen auf Gleichheit untersucht werden.

Ich nehme auch an, die Einschränkungen auf die Sphäre?

> Meine Antwort ist, dass sie nicht gleich sind, weil
> ersteres eine 2-Form ist und letzteres eine 1-Form.

Ja. Gibt es da noch interessanter Aufgaben?

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]