www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Navigation
 Startseite...
 Suchen
 Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Differentialform, Grad
Differentialform, Grad < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialform, Grad: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:06 Sa 26.01.2013
Autor: sissile

Aufgabe
Sei [mm] \vektor{v_1 \\ \vdots \\ v_n}: [/mm] U -> [mm] \IR^n [/mm] mit v= [mm] \sum_{j=1}^n v_j dx_j [/mm] exakte 1 Form <=>  [mm] \exists [/mm] F: [mm] U->\IR [/mm] mit [mm] \sum_{j=1}^n D_j [/mm] F [mm] dx_j [/mm]  = dF =
v [mm] =\sum_{j=1}^n v_j dx_j [/mm] <=> [mm] \exists [/mm] F:U [mm] ->\IR [/mm] mit  [mm] \vektor{v_1 \\ \vdots \\ v_n}= [/mm] grad F

Frage: Gibt es davon auch eine allgemeines Resultat für höhere Formen?Und für Hyperformen? Vlt. mit der Javobimatrix(=Funktionalmatrix)?

Hallo,
Meine Frage tauchte beim Lernen auf.Vlt. hatten wir auch so ein Resultat, aber ich finde es nicht - da ich auch nicht weiß ob es so eins gibt und wie es lautet.

        
Bezug
Differentialform, Grad: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:46 So 27.01.2013
Autor: sissile

Ein kleiner Push der Frage, sei mir gegönnt ;)

Lg

Bezug
        
Bezug
Differentialform, Grad: Antwort
Status: (Antwort) fertig Status 
Datum: 22:55 Mo 28.01.2013
Autor: SEcki


> Frage: Gibt es davon auch eine allgemeines Resultat für
> höhere Formen?

Resultat? Das ist doch irgendwie eine Definition?!? Also ein n-Form k ist exakt, falls es eine (n-1)-Form l gibt mit [m]d(l)=k[/m].

> Und für Hyperformen?

Was ist das?

SEcki


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]