Diagonalisierbarkeit < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:28 So 13.03.2011 | Autor: | Mandy_90 |
Aufgabe | Welche der folgenden Matrizen sind diagonalisierbar?
[mm] A=\pmat{ 2 & 1 \\ 1 & 2 } \in M_{2}(\IR), B=\pmat{ 5 & 1 \\ -4 & 1 } \in M_{2}(\IR), C=\pmat{ 3 & 2 & 0 \\ -2 & -1 & 0 \\ -1 & -1 & 0 } \in M_{3}(\IR), D=\pmat{ 3 & 2 & 0 \\ -2 & -1 & 0 \\ -1 & -1 & 0 } \in M_{3}(\IF_{2}) [/mm] |
Guten Abend^^
Ich hab die Matrizen auf Diagonalisierbarkeit überprüft,aber bin noch etwas verwirrt bzgl. der Diagonalisierbarkeit, weil wir verschiedene Sätze dazu hatten.
Wir hatten uns den Spektralsatz für Matrizen aufgeschrieben:
" Sei A eine quadratische Matrix. A ist genau dann symmetrisch, wenn ein Q aus den orthogonalen Matrizen existiert,sodass [mm] Q^{T}*A*Q=Q^{-1}*A*Q [/mm] diagonal ist."
Verstehe ich das jetzt richtig, dass eine quadratische Matrix genau dann diagonalisierbar ist, wenn sie symmetrisch ist? Und wenn sie symmetrisch ist, ist sie auch diagonalisierbar?
Demnach kann ja nur A diagonalisierbar sein oder verstehe ich hier etwas falsch?
Vielen Dank
lg
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:42 So 13.03.2011 | Autor: | Eliza |
Hallo Mandy!
Wichtig an diesem Satz ist die Bedingung, dass Q orthogonal ist. Also folgt aus diesem Satz, dass jede symmetrische Matrix diagonalisierbar ist, nämlich durch die beschriebene Transformation mit der orthogonalen Matrix Q. Es folgt aber nicht, dass nur symmetrische Matrizen diagonalisierbar sind, da es für eine andere Matrix M ja unter Umständen eine nicht orthogonale Matrix T geben kann, so dass [mm]T*M*T^{-1}[/mm] diadonal ist!
Ich hoffe, das hilft dir weiter!
Grüße, Eliza
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 23:03 So 13.03.2011 | Autor: | Mandy_90 |
> Wichtig an diesem Satz ist die Bedingung, dass Q orthogonal
> ist. Also folgt aus diesem Satz, dass jede symmetrische
> Matrix diagonalisierbar ist, nämlich durch die
> beschriebene Transformation mit der orthogonalen Matrix Q.
> Es folgt aber nicht, dass nur symmetrische Matrizen
> diagonalisierbar sind, da es für eine andere Matrix M ja
> unter Umständen eine nicht orthogonale Matrix T geben
> kann, so dass [mm]T*M*T^{-1}[/mm] diadonal ist!
Achso, stimmt.
Wir hatten uns noch einen Satz aufgeschrieben, der besagte, dass wenn eine Matrix dim(V) verschiedene Eigenwerte hat, dann ist sie diagonalisierbar. Die Matrix B hat nur einen Eigenwert, nämlich 3. Wir befinden uns aber im [mm] \IR^{2}=V,also [/mm] ist dim(V)=2. Das heißt, dass die Matrix B nicht diagonalisierbar ist, richtig?
lg
|
|
|
|
|
Hallo Mandy_90,
> > Wichtig an diesem Satz ist die Bedingung, dass Q orthogonal
> > ist. Also folgt aus diesem Satz, dass jede symmetrische
> > Matrix diagonalisierbar ist, nämlich durch die
> > beschriebene Transformation mit der orthogonalen Matrix Q.
> > Es folgt aber nicht, dass nur symmetrische Matrizen
> > diagonalisierbar sind, da es für eine andere Matrix M ja
> > unter Umständen eine nicht orthogonale Matrix T geben
> > kann, so dass [mm]T*M*T^{-1}[/mm] diadonal ist!
>
> Achso, stimmt.
>
> Wir hatten uns noch einen Satz aufgeschrieben, der besagte,
> dass wenn eine Matrix dim(V) verschiedene Eigenwerte hat,
> dann ist sie diagonalisierbar. Die Matrix B hat nur einen
> Eigenwert, nämlich 3. Wir befinden uns aber im
> [mm]\IR^{2}=V,also[/mm] ist dim(V)=2. Das heißt, dass die Matrix B
> nicht diagonalisierbar ist, richtig?
Das stimmt so nicht.
Genau genommen, mußt Du jetzt die geometrische
Vielfachheit des Eigenwertes 2 überprüfen, d.h.
die Dimension des Eigenraums zum Eigenwert 3.
Stimmen die algebraischen und geometrischen
Vielfachheiten eines jeden Eigenwertes überein,
so ist die zugehörige Matrix diagonalisierbar.
>
> lg
Gruss
MathePower
|
|
|
|