www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Diagonalisierbarkeit
Diagonalisierbarkeit < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalisierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:58 Fr 28.08.2009
Autor: Domwow

Aufgabe
Es sei w die durch W: [mm] \begin{pmatrix} 1 \\ 0\\ 0 \\ 0\end{pmatrix}[/mm] -> [mm] \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}[/mm],  W:[mm]\begin{pmatrix} 0 \\ 1 \\ 0 \\0 \end{pmatrix}[/mm] -> [mm]\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}[/mm], W: [mm]\begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}[/mm] -> [mm]\begin{pmatrix} 0 \\ 0\\ 1 \\ -1 \end{pmatrix}[/mm], W:[mm]\begin{pmatrix} 0 \\ 0 \\ -1 \\ 1 \end{pmatrix}[/mm] -> [mm]\begin{pmatrix} 0\\ 0\\ 1 \\ -1 \end{pmatrix}[/mm] definierte lineare Abbildung [mm]R^4[/mm] -> [mm]R^4[/mm] und WM die (bezüglich der Standard-Basen in Urbild- und Bildraum) zugehörige Matrix. Bewerten Sie dazu folgende Aussage:


- WM ist diagonalisierbar

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Guten Tag!
Ich habe mir zunächst die Matrix WM gebildet:

[mm]\begin{pmatrix} 0 & 1&0&0 \\ 1 &0&0&0\\ 0&0&1&1\\ 0&0&-1&-1 \end{pmatrix}[/mm].

Dann hab ich die Eigenwerte berechnet (0,0,1,-1) und geschaut, wie die geoemtrischen Vielfachheiten aussehen. Zum doppelten Eigenwert 0 gibt es jetzt allerdings nur die geometrische Vielfachheit 1, so dass [mm] \alpha(0)\not=\gamma(0) [/mm] ist, wonach die Matrix nicht diagonalisierbar wäre, was sie aber laut Lösung ist. Ich sehe meinen Fehler einfach nicht!


Vielen Dank im Voraus und liebe Grüße!



        
Bezug
Diagonalisierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:09 Fr 28.08.2009
Autor: angela.h.b.


> Es sei w die durch W: [mm]\begin{pmatrix} 1 \\ 0\\ 0 \\ 0\end{pmatrix}[/mm]
> -> [mm]\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}[/mm],  
> W:[mm]\begin{pmatrix} 0 \\ 1 \\ 0 \\0 \end{pmatrix}[/mm] ->
> [mm]\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}[/mm], W:
> [mm]\begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}[/mm] ->
> [mm]\begin{pmatrix} 0 \\ 0\\ 1 \\ -1 \end{pmatrix}[/mm],
> W:[mm]\begin{pmatrix} 0 \\ 0 \\ -1 \\ 1 \end{pmatrix}[/mm] ->
> [mm]\begin{pmatrix} 0\\ 0\\ 1 \\ -1 \end{pmatrix}[/mm] definierte
> lineare Abbildung [mm]R^4[/mm] -> [mm]R^4[/mm] und WM die (bezüglich der
> Standard-Basen in Urbild- und Bildraum) zugehörige Matrix.
> Bewerten Sie dazu folgende Aussage:
>  
>
> - WM ist diagonalisierbar
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Guten Tag!
>  Ich habe mir zunächst die Matrix WM gebildet:


Hallo,

nein, Deine Matrix ist nicht die, die Du untersuchen sollst.
Deine Matrix ist die darstellende Matrix der Abbildung w bzgl der Basis [mm] B=(\begin{pmatrix} 1 \\ 0 \\ 0 \\0 \end{pmatrix},\begin{pmatrix} 0 \\ 1 \\ 0 \\0 \end{pmatrix},\begin{pmatrix} 0 \\ 0 \\ 1 \\1 \end{pmatrix},\begin{pmatrix} 0 \\ 0 \\ -1 \\1 \end{pmatrix}) [/mm] im Urbildraum und der Standardbasis im Bildraum.

Fürs charakteristische Polynom und Eigenwerte braucht man aber in beiden Räumen dieselbe Basis.

(Hatten wir das nicht neulich schon in sehr ähnlicher Weise?)

Gruß v. Angela


Bezug
                
Bezug
Diagonalisierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:34 Fr 28.08.2009
Autor: Domwow

Also ist wieder w(b1)=b2, w(b2)=(b1), w(b3)=-b4 und w(b4)=-b4?

Dann würde ich ja folgende Matrix erhalten:

[mm]\begin{pmatrix} 0 & 1&0&0 \\ 1 & 0&0&0\\ 0&0&0&0\\ 0&0&-1&-1 \end{pmatrix}[/mm]

Bezug
                        
Bezug
Diagonalisierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:44 Fr 28.08.2009
Autor: angela.h.b.

Hallo,

ja, das wäre dann die Abbildungsmatrix bzg. der Basis B in urbild- und Bildraum.

Gruß v. Angela

Bezug
                                
Bezug
Diagonalisierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:05 Sa 29.08.2009
Autor: Domwow

Okay, so langsam prägt sich das mit den Abbildungsmatrizen bei mir ein!

Vielen Dank noch einmal!

Gruß Dom.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]