www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Dezimaldarstellung
Dezimaldarstellung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dezimaldarstellung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:00 Di 29.10.2013
Autor: couldbeworse

Aufgabe
Sei [mm] $P=U\left( \left[0,1\right]\right)$ [/mm] die Gleichverteilung auf [mm] $\left[ 0,1\right]$. [/mm] Berechnen Sie die Wahrscheinlichkeiten folgender Ereignisse:
a) Die siebte Nachkommastelle in der Dezimaldarstellung ist gerade
b) Alle Nachkommastellen in der Dezimaldarstellung sind gerade
c) [mm] $\IQ \cap \left[ 0,1\right] [/mm] $
Da die Dezimaldarstellung nicht eindeutig ist, legen Sie sich bitte vorab auf eine eindeutige Variante fest. Führen unterschiedliche Varianten zu verschiedenen Wahrscheinlichkeiten?

Hallo zusammen!

Ich glaube ich mache es mir bei dieser Aufgabe zu einfach, vielleicht kann ja mal jemand drüber gucken:

zu a) Die Wahrscheinlichkeit ist [mm] $\frac{1}{2}$, [/mm] da es egal ist ob ich die erste oder die siebte Nachkommastelle betrachte?

zu b) Die Wahrscheinlichkeit ist [mm] $\prod_{i=1}^{\infty}\frac{1}{2}$, [/mm] da die Wahrscheinlichkeit für jede Nachkommastelle, unabhängig von den vorherigen, wieder [mm] $\frac{1}{2}$ [/mm] ist?

zu c) Die Wahrscheinlichkeit ist Null, da [mm] $\IQ \cap \left[ 0,1\right] [/mm] $ abzählbar ist?

zum Nachsatz: ich hatte jetzt die Darstellung angenommen, in der 1,0 als 0,9999... geschrieben wird. Ich glaube nicht, dass sich die Wahrscheinlichkeiten ändern, da nur abzählbar viele Zahlen abgeändert werden?

Vielen Dank für eure Hilfe!

Gruß couldbeworse

        
Bezug
Dezimaldarstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:32 Di 29.10.2013
Autor: Al-Chwarizmi


> Sei [mm]P=U\left( \left[0,1\right]\right)[/mm] die Gleichverteilung
> auf [mm]\left[ 0,1\right][/mm]. Berechnen Sie die
> Wahrscheinlichkeiten folgender Ereignisse:
>  a) Die siebte Nachkommastelle in der Dezimaldarstellung
> ist gerade
>  b) Alle Nachkommastellen in der Dezimaldarstellung sind
> gerade
>  c) [mm]\IQ \cap \left[ 0,1\right][/mm]
>  Da die Dezimaldarstellung
> nicht eindeutig ist, legen Sie sich bitte vorab auf eine
> eindeutige Variante fest. Führen unterschiedliche
> Varianten zu verschiedenen Wahrscheinlichkeiten?
>  Hallo zusammen!
>  
> Ich glaube ich mache es mir bei dieser Aufgabe zu einfach,
> vielleicht kann ja mal jemand drüber gucken:
>  
> zu a) Die Wahrscheinlichkeit ist [mm]\frac{1}{2}[/mm], da es egal
> ist ob ich die erste oder die siebte Nachkommastelle
> betrachte?
>  
> zu b) Die Wahrscheinlichkeit ist
> [mm]\prod_{i=1}^{\infty}\frac{1}{2}[/mm], da die Wahrscheinlichkeit
> für jede Nachkommastelle, unabhängig von den vorherigen,
> wieder [mm]\frac{1}{2}[/mm] ist?
>  
> zu c) Die Wahrscheinlichkeit ist Null, da [mm]\IQ \cap \left[ 0,1\right][/mm]
> abzählbar ist?
>  
> zum Nachsatz: ich hatte jetzt die Darstellung angenommen,
> in der 1,0 als 0,9999... geschrieben wird. Ich glaube
> nicht, dass sich die Wahrscheinlichkeiten ändern, da nur
> abzählbar viele Zahlen abgeändert werden?
>  
> Vielen Dank für eure Hilfe!
>  
> Gruß couldbeworse


Hallo,

deine Überlegungen sind korrekt. Bei (b) solltest
du noch das zahlenmäßige Resultat angeben.

LG ,   Al-Chw.


Bezug
                
Bezug
Dezimaldarstellung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:56 Di 29.10.2013
Autor: couldbeworse

Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]