www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Definitionsbereich R²
Definitionsbereich R² < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definitionsbereich R²: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:17 Mi 25.05.2011
Autor: engels

Aufgabe
Gegeben sei:

[mm] f(x,y)=\wurzel[]{3x^{2}-4xy+2y^{2}} [/mm]

Bestimmen Sie den maximalen Definitionsbereich und geben Sie an, wo f differenzierbar ist.

Meine Ideen sind:

Ich setze den Term unter der Wurzel [mm] 3x^{2}-4xy+2y^{2} \ge [/mm] 0.
Durch Umformen erhalte ich dann: [mm] 3x^{2}+2y^{2} \ge [/mm] 4xy. Eine genauere Angabe kann ich doch hierbei nicht mehr machen, oder?

Zur zweiten Frage würde ich partiell ableiten, nach dem Schema:

[mm] \bruch{d}{dx} \wurzel[]{g(x,y)} [/mm] = [mm] \bruch{1}{2g(x,y)} [/mm] * [mm] \bruch{d}{dx} [/mm] g(x,y)

Man würde dann wieder sehen, dass f im ganzen Definitionsbereich differenzierbar ist.

Ist mein Vorgehen richtig?

        
Bezug
Definitionsbereich R²: Antwort
Status: (Antwort) fertig Status 
Datum: 16:26 Mi 25.05.2011
Autor: MathePower

Hallo engels,

> Gegeben sei:
>  
> [mm]f(x,y)=\wurzel[]{3x^{2}-4xy+2y^{2}}[/mm]
>  
> Bestimmen Sie den maximalen Definitionsbereich und geben
> Sie an, wo f differenzierbar ist.
>  Meine Ideen sind:
>  
> Ich setze den Term unter der Wurzel [mm]3x^{2}-4xy+2y^{2} \ge[/mm]
> 0.
>  Durch Umformen erhalte ich dann: [mm]3x^{2}+2y^{2} \ge[/mm] 4xy.
> Eine genauere Angabe kann ich doch hierbei nicht mehr
> machen, oder?


Versuche den Term unter der Wurzel als Summe von Quadraten zu schreiben.


>  
> Zur zweiten Frage würde ich partiell ableiten, nach dem
> Schema:
>  
> [mm]\bruch{d}{dx} \wurzel[]{g(x,y)}[/mm] = [mm]\bruch{1}{2g(x,y)}[/mm] *
> [mm]\bruch{d}{dx}[/mm] g(x,y)


[ok]


>  
> Man würde dann wieder sehen, dass f im ganzen
> Definitionsbereich differenzierbar ist.
>
> Ist mein Vorgehen richtig?


Gruss
MathePower

Bezug
                
Bezug
Definitionsbereich R²: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:14 Mi 25.05.2011
Autor: engels

Ich kann mir leider unter "Summe von Quadraten" nichts vorstellen. Hättest du da ein Beispiel für mich?

Bezug
                        
Bezug
Definitionsbereich R²: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 Mi 25.05.2011
Autor: angela.h.b.


> Ich kann mir leider unter "Summe von Quadraten" nichts
> vorstellen. Hättest du da ein Beispiel für mich?

Hallo,

[mm] (x+y)^2 [/mm] + [mm] (x-4)^2 [/mm] + [mm] (z+5)^2 [/mm] ist ein Beispiel für eine Summe von Quadraten.

Gruß v. Angela


Bezug
                                
Bezug
Definitionsbereich R²: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:28 Mi 25.05.2011
Autor: engels

Oke, das hab ich mir schon fast gedacht, aber wie soll ich das denn nun bitte auf die Aufgabe anwenden?

Klar könnte ich versuchen den Term mit x und y in der Form [mm] (x+...)^{2}+(y+...)^{2} [/mm] zu bringen, mich stört aber das 4xy. Da finde ich keine Möglichkeit das wegzukriegen.

Bezug
                                        
Bezug
Definitionsbereich R²: Antwort
Status: (Antwort) fertig Status 
Datum: 19:36 Mi 25.05.2011
Autor: MathePower

Hallo engels,

> Oke, das hab ich mir schon fast gedacht, aber wie soll ich
> das denn nun bitte auf die Aufgabe anwenden?
>  
> Klar könnte ich versuchen den Term mit x und y in der Form
> [mm](x+...)^{2}+(y+...)^{2}[/mm] zu bringen, mich stört aber das
> 4xy. Da finde ich keine Möglichkeit das wegzukriegen.


Auf den Term unter der Wurzel kannst Du
zunächst quadratische Ergänzung anwenden.


Gruss
MathePower

Bezug
                                                
Bezug
Definitionsbereich R²: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:38 Do 26.05.2011
Autor: engels

Die quad. Ergänzung kenne ich ja nur wie soll ich die denn anwenden? Das ist ja meine Frage. Ich finde keine Möglichkeit die Ergänzung sinnvoll anzuwenden. Ich hab versucht den Term in eine Form von [mm] (x+y)^{2} [/mm] zu bringen, dies bring mich aber auch nicht weiter. Wenn ich eine From von [mm] (x-..)^{2} [/mm] und [mm] (y-..)^{2} [/mm] versuche, bekomm ich mein -4xy ja nicht weg.

Kann mir jemand die Idee mal ausführlich erklären?

Bezug
                                                        
Bezug
Definitionsbereich R²: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Do 26.05.2011
Autor: MathePower

Hallo engels,

> Die quad. Ergänzung kenne ich ja nur wie soll ich die denn
> anwenden? Das ist ja meine Frage. Ich finde keine
> Möglichkeit die Ergänzung sinnvoll anzuwenden. Ich hab
> versucht den Term in eine Form von [mm](x+y)^{2}[/mm] zu bringen,
> dies bring mich aber auch nicht weiter. Wenn ich eine From
> von [mm](x-..)^{2}[/mm] und [mm](y-..)^{2}[/mm] versuche, bekomm ich mein
> -4xy ja nicht weg.
>  
> Kann mir jemand die Idee mal ausführlich erklären?


Schreibe den Term unter der Wurzel zunächst so:

[mm]3x^{2}-4xy+2y^{2}}=3*x^{2}+2*\left(y^2-2*x*y\right)[/mm]

Auf den Ausdruck [mm]y^{2}-2*x*y[/mm] ist
dann quadratische Ergänzung anzuwenden.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]