www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Definition Tensorprodukt
Definition Tensorprodukt < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definition Tensorprodukt: Erklärungs
Status: (Frage) überfällig Status 
Datum: 20:20 Mo 11.03.2013
Autor: DjHighlife

Hallo,

ich habe eine Frage zur Definition des Tensorprodukts von 2 VR. In der VL wurde es folgendermaßen definiert:

V,W Vektorräume. [mm]S := V \times W[/mm] als Menge aufgefasst.
[mm] F:= \oplus_{s \in S} K [/mm] mit [mm]K=V_s[/mm]
dies ist nat. ein K-VR mit Basis [mm](e_s)_{s \in S}[/mm] also mit einer 1 an der s-ten Stelle, ansonsten 0.

In diesem F batrachten wir einen Unterraum E, der erzeugt wird von Elementen der Form:

(1)[mm]e_{a,b}+e_{a',b}-e_{a+a',b}[/mm]
(2)[mm]e_{a,b}+e_{a,b'}-e_{a,b+b'}[/mm]
(3)[mm]e_ {\lambda(a,b)}-e_{(\lambda a,b)}[/mm]
(4)[mm]e_ {\lambda(a,b)}-e_{(a,\lambda b)}[/mm]

Und nun defniere ich als Tensorprodukt: [mm]V \otimes W := F/E[/mm]

ich versuch das jetzt mal etwas unmathematisch auszudrücken:
Ich nehme mir 2 Vektorräume, addiere die per direkter Summe, sd. ein Vektorraum F entsteht mit einer Standardtbasis [mm] e_s. [/mm]
Dann konstruiere ich mir einen Unterraum, der die obigen Eigenschaften erfüllt (1-4)
Dann bilde ich den Quotientenvektorraum F/E, was der Raum aller Äquivalenzklassen ist. Und das ist dann das Tensorprodukt.

Stimmt das so in etwa?

Meine Hauptfrage ist jetzt aber: Was machen die Eigenschaften 1-4 für einen Sinn, bzw warum gerade DIE und nicht irgendetwas anderes. Das sind ja gerade sozusagen die Eigenschaften einer bilinieren Abbildung. ?!
Versuche ich dann praktisch alle "bilinearen Eigenschaften zu entfernen", da ich E ja per Quotientenvektorraum rausfaktorisiere, um dann eine lineare Abb. vom Tensorprodukt in ein Bild X einer bilinearen Abb. (zB.[mm]V \times W \to X[/mm])zu erhalten. (also die universelle Eigenschaft zu erfüllen.)
Ich würde also eine bilineare Abb. linearisieren durch Vorschalten einer Quotientenabbildung. (Edit: Ich glaube dies ist nicht wirklich eine Quotientenabb. sondern eine bilineare Abb.  [mm]V \times W \to V \otimes W[/mm], was wir in der VL nach der universellen Eigenschaft gezeigt haben.)

Ich hoffe ihr könnt mich einigermasen verstehen ;)
Kann mir da jemand ein paar Denkanstöße geben, ob ich teilweise auf der richtigen Spur bin oder total falsch liege ;)

Viele Grüße,
Michael

        
Bezug
Definition Tensorprodukt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Mi 13.03.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]