www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - DGL: Anfangswertproblem
DGL: Anfangswertproblem < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL: Anfangswertproblem: Rechenweg gesucht
Status: (Frage) beantwortet Status 
Datum: 15:55 Fr 21.01.2005
Autor: DerKleineEisbaer

Hallo,

ich habe in einer Aufgabensammlung folgendes AWP gefunden, inkl. Lösung, jedoch komme ich nicht auf den Rechenweg, wenn mir da jemand helfen könnte, wäre ich sehr dankbar.


  x(punkt) (t)  =  e ^ ( - x(t) + 4 )

  x(0) = 1

und die Lösung ist:

  x(t)  =  ln (t + 4)


Gruß, Lars


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
DGL: Anfangswertproblem: Falsche Lösung?
Status: (Antwort) fertig Status 
Datum: 18:01 Fr 21.01.2005
Autor: e.kandrai

Also, korrigiert mich bitte, wenn ich falsch liege: aber ich glaube, die angegebene Lösung stimmt nicht.
Kann man ja mal ein die Ausgangs-DGL einsetzen.
Die DGL lautet (falls ich sie richtig verstanden habe): [mm]x'(t)=e^{-x(t)+4}[/mm].
Und die angebliche Lösung: [mm]x(t)=ln(x+4)[/mm].
Dann setz ich das mal ein, zuerst die Ableitung der geg. Lösung: [mm]x'(t)=\bruch{1}{x+4}[/mm].
Und jetzt einsetzen in die rechte Seite der DGL: [mm]e^{-ln(x+4)+4}=e^{4-ln(x+4)}=e^4 \cdot e^{-ln(x+4)}=e^4 \cdot \bruch{1}{e^{ln(x+4)}}=\bruch{e^4}{x+4}[/mm].
Und meiner Meinung nach ist [mm]\bruch{1}{x+4}[/mm] nicht dasselbe wie [mm]\bruch{e^4}{x+4}[/mm].

Aber es gibt auch ne gute Nachricht: ich hab's mal durchgerechnet, und eine Lösung gefunden, die die DGL auch wirklich erfüllt.

Gelöst hab ich's mit Trennung der Variablen (die x(t) und die t hier zu trennen, ist recht einfach).
Dazu schreibt man ja das [mm]x'(t)[/mm] um als [mm]\bruch{dx}{dt}[/mm] (statt x(t) werd ich ab jetzt nur noch x schreiben).

[mm]\bruch{dx}{dt}=e^{-x+4}[/mm]  [mm] \gdw[/mm]   [mm]\bruch{dx}{dt}=e^{-x} \cdot e^4[/mm]  [mm] \gdw[/mm]   [mm]\bruch{dx}{e^{-x}}=e^4 dt[/mm]  [mm] \gdw[/mm]   [mm]e^x dx = e^4 dt[/mm]

Jetzt auf beiden Seiten integrieren:

[mm]e^{x(t)}=e^4t+c[/mm]

Um nach der Funktion x(t) aufzulösen, müssen wir auf beiden Seiten logarithmieren:

[mm]x(t)=ln(e^4t+c)[/mm]

Jetzt fehlt nur noch die Anfangswertbedingung: [mm]x(0)=ln(c)=1[/mm]  [mm] \gdw[/mm]   [mm]c=e[/mm]

Und somit lautet die gesuchte Funktion: [mm]x(t)=ln(e^4t+e)[/mm]

Im [mm]ln[/mm] kannst du noch ein [mm]e[/mm] ausklammern, und mit Hilfe der Rechenregel [mm]log(a \cdot b)=log(a) + log(b)[/mm] können wir das dann umschreiben zu: [mm]x(t)=1+ln(e^3t+1)[/mm].

Und nach meiner Probe ist das auch die richtige Lösung, außer ich hab mich wirklich extrem und sehr oft verrechnet.

Bezug
                
Bezug
DGL: Anfangswertproblem: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:48 Sa 22.01.2005
Autor: DerKleineEisbaer

So, mit einem inzwischen von unserem Tutor korrigierten Anfangswert x(1) = 4 und der gegebenen Lösung x(t) = ln(t) + 4 (nicht x(t) = ln (t+4)) komme ich nun auch problemlos auf diese Lösung.


"Trennung der Veränderlichen" war das Stichwort - Danke !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]