www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL 2Ordnung AWP
DGL 2Ordnung AWP < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL 2Ordnung AWP: AWP - Wie ermitteln ?
Status: (Frage) beantwortet Status 
Datum: 17:42 Sa 26.06.2010
Autor: Kerberos2008

Aufgabe
ÜB12 A2 NR.2
Man löse die Anfangswertprobleme:
y'' - 10*y' + [mm] x^{2} [/mm] = 0

y'' - 10*y' = - [mm] x^{2} [/mm]

[mm] x_{0}=0 [/mm]
[mm] y_{0}=0 [/mm]
[mm] y_{0}'=0 [/mm]


y'' - 10*y' = - [mm] x^{2} [/mm]

1. Schritt: Charakteristisches homogenes Polynom aufstellen:

[mm] \lambda^{2} [/mm] - 10 * [mm] \lambda [/mm] + 0 = 0

PQ-Formel:

[mm] \lambda_{1,2} [/mm] = 5 [mm] \pm \wurzel{5^{2}} [/mm]
[mm] \lambda_{1} [/mm] = 10
[mm] \lambda_{2} [/mm] = 0

Daraus ergibt sich:
[mm] \lambda_{1} \not= \lambda_{2} [/mm]

[mm] \Rightarrow y_{1}=e^{\lambda_{1}*x} [/mm] = [mm] y_{1}=e^{10*x} [/mm]
[mm] \Rightarrow y_{2}=e^{\lambda_{2}*x} [/mm] = [mm] y_{2}=e^{0*x}=e^{0*x}=1 [/mm]

Daraus ergibt sich die homogene Lösung:

[mm] y_{h}(x)=c_{1}*e^{10*x}+c_{2} [/mm]

Soweit sogut!

Nun können wir noch folgendes aus der gegebenen Ausgangsgleichung ableiten:

Störfkt.: g(x) = [mm] -x^{2} [/mm]
Vorfaktoren: a = -10; b = 0

y(x) = [mm] y_{h}(x) [/mm] + [mm] y_{p}(x) [/mm]

Ermitteln von [mm] y_{p}: [/mm]

Aus dem oben gegebenen [mm] \Rightarrow [/mm] Polynom 2. Grades ist die Störefkt.!

g(x) = [mm] P_{n}(x) [/mm]

da b = 0 & a [mm] \not= [/mm] 0
[mm] \Rightarrow y_{p} [/mm] = x * [mm] Q_{n} [/mm]

Ermitteln des Polynomes & der Koeffizienten:
[mm] Q_{n} [/mm] = [mm] a_{2}*x^{2} [/mm] + [mm] a_{1}*x [/mm] + [mm] a_{0} [/mm]

[mm] y_{p} [/mm] = x * [mm] Q_{n} [/mm]
[mm] y_{p} [/mm] = x * [mm] (a_{2}*x^{2} [/mm] + [mm] a_{1}*x [/mm] + [mm] a_{0}) [/mm]
[mm] y_{p} [/mm] = [mm] a_{2}*x^{3} [/mm] + [mm] a_{1}*x^{2} [/mm] + [mm] a_{0}*x [/mm]
[mm] y_{p}' [/mm] = [mm] 3*a_{2}*x^{2} [/mm] + [mm] 2*a_{1}*x [/mm] + [mm] a_{0} [/mm]
[mm] y_{p}'' [/mm] = [mm] 6*a_{2}*x [/mm] + [mm] 2*a_{1} [/mm]

Einsetzen für den Koeffizientenvergleich!
(x * [mm] Q_{n}'' [/mm] - 10(x * [mm] Q_{n}' [/mm] + 0*(x * [mm] Q_{n} [/mm] = [mm] -x^{2}) [/mm]

[mm] 6*a_{2}*x [/mm] + [mm] 2*a_{1} [/mm] - [mm] 10*(3*a_{2}*x^{2} [/mm] + [mm] 2*a_{1}*x+a_{0})+ [/mm] 0 * [mm] (a_{2}*x^{3} [/mm] + [mm] a_{1}*x^{2} [/mm] + [mm] a_{0}*x) [/mm] = [mm] -x^{2} [/mm]

[mm] 6*a_{2}*x [/mm] + [mm] 2*a_{1} [/mm] - [mm] (30*a_{2}*x^{2} [/mm] + [mm] 20*a_{1}*x [/mm] + [mm] 10*a_{0})= -x^{2} [/mm]

[mm] 6*a_{2}*x [/mm] + [mm] 2*a_{1} [/mm] - [mm] 30*a_{2}*x^{2} [/mm] - [mm] 20*a_{1}*x [/mm] - [mm] 10*a_{0}= -x^{2} [/mm]

Sortieren nach Potenzen:

- [mm] 30*a_{2}*x^{2} [/mm] + x * [mm] (6*a_{2} [/mm] - [mm] 20*a_{1}) [/mm] - [mm] 10*a_{0} [/mm] + [mm] 2*a_{1} [/mm] = [mm] -x^{2} [/mm]

Betrachten wir nun die einzelnen Koeffizienten:

- [mm] 30*a_{2}*x^{2} [/mm] = [mm] -x^{2} [/mm]
[mm] a_{2} [/mm] = [mm] \bruch{1}{30} [/mm]

x * [mm] (6*a_{2} [/mm] - [mm] 20*a_{1}) [/mm] = 0
x * [mm] (6*\bruch{1}{30} [/mm] - [mm] 20*a_{1}) [/mm] = 0
x * [mm] (6*\bruch{1}{30} [/mm] - [mm] 20*a_{1}) [/mm] = 0
x * [mm] (\bruch{1}{5} [/mm] - [mm] 20*a_{1}) [/mm] = 0
[mm] \bruch{1}{5} [/mm] - [mm] 20*a_{1} [/mm] = 0
- [mm] 20*a_{1}) [/mm] = - [mm] \bruch{1}{5} [/mm]
[mm] a_{1}) [/mm] = [mm] \bruch{1}{100} [/mm]

- [mm] 10*a_{0} [/mm] + [mm] 2*a_{1} [/mm] = 0
- [mm] 10*a_{0} [/mm] + [mm] 2*\bruch{1}{100} [/mm] = 0
- [mm] 10*a_{0} [/mm] = [mm] -\bruch{2}{100} [/mm]
[mm] a_{0} [/mm] = [mm] \bruch{2}{1000} [/mm] = [mm] \bruch{1}{500} [/mm]

[mm] y_{p}(x) [/mm] = [mm] \bruch{1}{30}*x^{3} [/mm] + [mm] \bruch{1}{100}*x^{2} [/mm] + [mm] \bruch{1}{500}*x [/mm]

y(x) = [mm] y_{h}(x) [/mm] + [mm] y_{p}(x) [/mm]
[mm] \Rightarrow [/mm] y(x) = [mm] c_{1}*e^{10*x} [/mm] + [mm] c_{2} [/mm] + [mm] \bruch{1}{30}*x^{3} [/mm] + [mm] \bruch{1}{100}*x^{2} [/mm] + [mm] \bruch{1}{500}*x [/mm]

So damit ist die DGL 2. Ordnung richtig gelöst!
Jedoch habe ich gerade einen Blackout, wie ich jetzt noch mal die Anfangswerte einsetzen muss um einen Endwert zu erhalten!

Mußte ich das Endergebnis zwei mal Ableiten ?
Für y' & y'' ?

Bitte um Hilfe diesbezüglich!

*Danke*



------------------------------
Ich habe diese Aufgabe niergenswo anders gepostet / hochgeladen /oder sonst auf irgend eine Art und Weise publiziert!



        
Bezug
DGL 2Ordnung AWP: Antwort
Status: (Antwort) fertig Status 
Datum: 18:01 Sa 26.06.2010
Autor: MathePower

Hallo Kerberos2008,

> ÜB12 A2 NR.2
>  Man löse die Anfangswertprobleme:
>  y'' - 10*y' + [mm]x^{2}[/mm] = 0
>  
> y'' - 10*y' = - [mm]x^{2}[/mm]
>  
> [mm]x_{0}=0[/mm]
>  [mm]y_{0}=0[/mm]
>  [mm]y_{0}'=0[/mm]
>  
>
> y'' - 10*y' = - [mm]x^{2}[/mm]
>  
> 1. Schritt: Charakteristisches homogenes Polynom
> aufstellen:
>  
> [mm]\lambda^{2}[/mm] - 10 * [mm]\lambda[/mm] + 0 = 0
>  
> PQ-Formel:
>  
> [mm]\lambda_{1,2}[/mm] = 5 [mm]\pm \wurzel{5^{2}}[/mm]
>  [mm]\lambda_{1}[/mm] = 10
>  [mm]\lambda_{2}[/mm] = 0
>  
> Daraus ergibt sich:
>  [mm]\lambda_{1} \not= \lambda_{2}[/mm]
>  
> [mm]\Rightarrow y_{1}=e^{\lambda_{1}*x}[/mm] = [mm]y_{1}=e^{10*x}[/mm]
>  [mm]\Rightarrow y_{2}=e^{\lambda_{2}*x}[/mm] =
> [mm]y_{2}=e^{0*x}=e^{0*x}=1[/mm]
>  
> Daraus ergibt sich die homogene Lösung:
>  
> [mm]y_{h}(x)=c_{1}*e^{10*x}+c_{2}[/mm]
>  
> Soweit sogut!
>  
> Nun können wir noch folgendes aus der gegebenen
> Ausgangsgleichung ableiten:
>  
> Störfkt.: g(x) = [mm]-x^{2}[/mm]
>  Vorfaktoren: a = -10; b = 0
>  
> y(x) = [mm]y_{h}(x)[/mm] + [mm]y_{p}(x)[/mm]
>  
> Ermitteln von [mm]y_{p}:[/mm]
>  
> Aus dem oben gegebenen [mm]\Rightarrow[/mm] Polynom 2. Grades ist
> die Störefkt.!
>
> g(x) = [mm]P_{n}(x)[/mm]
>  
> da b = 0 & a [mm]\not=[/mm] 0
>  [mm]\Rightarrow y_{p}[/mm] = x * [mm]Q_{n}[/mm]
>  
> Ermitteln des Polynomes & der Koeffizienten:
>  [mm]Q_{n}[/mm] = [mm]a_{2}*x^{2}[/mm] + [mm]a_{1}*x[/mm] + [mm]a_{0}[/mm]
>  
> [mm]y_{p}[/mm] = x * [mm]Q_{n}[/mm]
>  [mm]y_{p}[/mm] = x * [mm](a_{2}*x^{2}[/mm] + [mm]a_{1}*x[/mm] + [mm]a_{0})[/mm]
>  [mm]y_{p}[/mm] = [mm]a_{2}*x^{3}[/mm] + [mm]a_{1}*x^{2}[/mm] + [mm]a_{0}*x[/mm]
>  [mm]y_{p}'[/mm] = [mm]3*a_{2}*x^{2}[/mm] + [mm]2*a_{1}*x[/mm] + [mm]a_{0}[/mm]
>  [mm]y_{p}''[/mm] = [mm]6*a_{2}*x[/mm] + [mm]2*a_{1}[/mm]
>  
> Einsetzen für den Koeffizientenvergleich!
> (x * [mm]Q_{n}''[/mm] - 10(x * [mm]Q_{n}'[/mm] + 0*(x * [mm]Q_{n}[/mm] = [mm]-x^{2})[/mm]
>  
> [mm]6*a_{2}*x[/mm] + [mm]2*a_{1}[/mm] - [mm]10*(3*a_{2}*x^{2}[/mm] + [mm]2*a_{1}*x+a_{0})+[/mm]
> 0 * [mm](a_{2}*x^{3}[/mm] + [mm]a_{1}*x^{2}[/mm] + [mm]a_{0}*x)[/mm] = [mm]-x^{2}[/mm]
>  
> [mm]6*a_{2}*x[/mm] + [mm]2*a_{1}[/mm] - [mm](30*a_{2}*x^{2}[/mm] + [mm]20*a_{1}*x[/mm] +
> [mm]10*a_{0})= -x^{2}[/mm]
>  
> [mm]6*a_{2}*x[/mm] + [mm]2*a_{1}[/mm] - [mm]30*a_{2}*x^{2}[/mm] - [mm]20*a_{1}*x[/mm] -
> [mm]10*a_{0}= -x^{2}[/mm]
>  
> Sortieren nach Potenzen:
>  
> - [mm]30*a_{2}*x^{2}[/mm] + x * [mm](6*a_{2}[/mm] - [mm]20*a_{1})[/mm] - [mm]10*a_{0}[/mm] +
> [mm]2*a_{1}[/mm] = [mm]-x^{2}[/mm]
>  
> Betrachten wir nun die einzelnen Koeffizienten:
>  
> - [mm]30*a_{2}*x^{2}[/mm] = [mm]-x^{2}[/mm]
>  [mm]a_{2}[/mm] = [mm]\bruch{1}{30}[/mm]
>  
> x * [mm](6*a_{2}[/mm] - [mm]20*a_{1})[/mm] = 0
>  x * [mm](6*\bruch{1}{30}[/mm] - [mm]20*a_{1})[/mm] = 0
>  x * [mm](6*\bruch{1}{30}[/mm] - [mm]20*a_{1})[/mm] = 0
>  x * [mm](\bruch{1}{5}[/mm] - [mm]20*a_{1})[/mm] = 0
>  [mm]\bruch{1}{5}[/mm] - [mm]20*a_{1}[/mm] = 0
>  - [mm]20*a_{1})[/mm] = - [mm]\bruch{1}{5}[/mm]
>  [mm]a_{1})[/mm] = [mm]\bruch{1}{100}[/mm]
>  
> - [mm]10*a_{0}[/mm] + [mm]2*a_{1}[/mm] = 0
>  - [mm]10*a_{0}[/mm] + [mm]2*\bruch{1}{100}[/mm] = 0
>  - [mm]10*a_{0}[/mm] = [mm]-\bruch{2}{100}[/mm]
>  [mm]a_{0}[/mm] = [mm]\bruch{2}{1000}[/mm] = [mm]\bruch{1}{500}[/mm]
>  
> [mm]y_{p}(x)[/mm] = [mm]\bruch{1}{30}*x^{3}[/mm] + [mm]\bruch{1}{100}*x^{2}[/mm] +
> [mm]\bruch{1}{500}*x[/mm]
>  
> y(x) = [mm]y_{h}(x)[/mm] + [mm]y_{p}(x)[/mm]
>  [mm]\Rightarrow[/mm] y(x) = [mm]c_{1}*e^{10*x}[/mm] + [mm]c_{2}[/mm] +
> [mm]\bruch{1}{30}*x^{3}[/mm] + [mm]\bruch{1}{100}*x^{2}[/mm] +
> [mm]\bruch{1}{500}*x[/mm]
>  
> So damit ist die DGL 2. Ordnung richtig gelöst!
>  Jedoch habe ich gerade einen Blackout, wie ich jetzt noch
> mal die Anfangswerte einsetzen muss um einen Endwert zu
> erhalten!
>  
> Mußte ich das Endergebnis zwei mal Ableiten ?
>  Für y' & y'' ?


Nein.

Du brauchst hier nur


[mm]y\left(0\right)= \ ... [/mm]

[mm]y'\left(0\right)= \ ... [/mm]

Dieses GLeichungsystem löst Du dann nach den Konstanten auf.


>  
> Bitte um Hilfe diesbezüglich!
>  
> *Danke*
>  
>
>
> ------------------------------
>  Ich habe diese Aufgabe niergenswo anders gepostet /
> hochgeladen /oder sonst auf irgend eine Art und Weise
> publiziert!
>  
>  


Gruss
MathePower

Bezug
                
Bezug
DGL 2Ordnung AWP: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:24 Sa 26.06.2010
Autor: Kerberos2008

Ah stimmt ich mußte dabei ja nur [mm] c_{1} [/mm] & [mm] c_{2} [/mm] ermitteln Dankeschön!

Dann sollte das Ergebnis folgendermaßen aussehen:

y(x) = [mm] c_{1} [/mm] * [mm] e^{10x} [/mm] + [mm] c_{2} [/mm] + [mm] \bruch{1}{30} [/mm] * [mm] x^{3} [/mm] + [mm] \bruch{1}{100} [/mm] * [mm] x^{2} [/mm] + [mm] \bruch{1}{500} [/mm] * x

y(0) = [mm] c_{1} [/mm] * [mm] e^{10*0} [/mm] + [mm] c_{2} [/mm] + [mm] \bruch{1}{30} [/mm] * [mm] 0^{3} [/mm] + [mm] \bruch{1}{100} [/mm] * [mm] 0^{2} [/mm] + [mm] \bruch{1}{500} [/mm] * 0

0 = [mm] c_{1} [/mm] * 1 + [mm] c_{2} [/mm]
[mm] -c_{1} [/mm] = [mm] c_{2} [/mm]

y(x)' = 10 * [mm] c_{1} [/mm] * [mm] e^{10x} [/mm] + [mm] \bruch{1}{10} [/mm] * [mm] x^{2} [/mm] + [mm] \bruch{1}{50} [/mm] * x + [mm] \bruch{1}{500} [/mm]

y(0)' = 10 * [mm] c_{1} [/mm] * [mm] e^{10*0} [/mm] + [mm] \bruch{1}{10} [/mm] * [mm] 0^{2} [/mm] + [mm] \bruch{1}{50} [/mm] * 0 + [mm] \bruch{1}{500} [/mm]

y(0)' = 10 * [mm] c_{1} [/mm] * 1 + [mm] \bruch{1}{500} [/mm]

0 = 10 * [mm] c_{1} [/mm] * 1 + [mm] \bruch{1}{500} [/mm]

- [mm] \bruch{1}{500} [/mm] = 10 * [mm] c_{1} [/mm]

[mm] \Rightarrow c_{1} [/mm] = - [mm] \bruch{1}{5000} [/mm]

und [mm] -c_{1} [/mm] = [mm] c_{2} \Rightarrow c_{2} [/mm] = [mm] \bruch{1}{5000} [/mm]


Sollte so stimmen oder ?
Habe dafür keine Teillösungen!


Bezug
                        
Bezug
DGL 2Ordnung AWP: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 Sa 26.06.2010
Autor: MathePower

Hallo Kerberos2008,

> Ah stimmt ich mußte dabei ja nur [mm]c_{1}[/mm] & [mm]c_{2}[/mm] ermitteln
> Dankeschön!
>  
> Dann sollte das Ergebnis folgendermaßen aussehen:
>  
> y(x) = [mm]c_{1}[/mm] * [mm]e^{10x}[/mm] + [mm]c_{2}[/mm] + [mm]\bruch{1}{30}[/mm] * [mm]x^{3}[/mm] +
> [mm]\bruch{1}{100}[/mm] * [mm]x^{2}[/mm] + [mm]\bruch{1}{500}[/mm] * x
>  
> y(0) = [mm]c_{1}[/mm] * [mm]e^{10*0}[/mm] + [mm]c_{2}[/mm] + [mm]\bruch{1}{30}[/mm] * [mm]0^{3}[/mm] +
> [mm]\bruch{1}{100}[/mm] * [mm]0^{2}[/mm] + [mm]\bruch{1}{500}[/mm] * 0
>  
> 0 = [mm]c_{1}[/mm] * 1 + [mm]c_{2}[/mm]
>  [mm]-c_{1}[/mm] = [mm]c_{2}[/mm]
>  
> y(x)' = 10 * [mm]c_{1}[/mm] * [mm]e^{10x}[/mm] + [mm]\bruch{1}{10}[/mm] * [mm]x^{2}[/mm] +
> [mm]\bruch{1}{50}[/mm] * x + [mm]\bruch{1}{500}[/mm]
>  
> y(0)' = 10 * [mm]c_{1}[/mm] * [mm]e^{10*0}[/mm] + [mm]\bruch{1}{10}[/mm] * [mm]0^{2}[/mm] +
> [mm]\bruch{1}{50}[/mm] * 0 + [mm]\bruch{1}{500}[/mm]
>  
> y(0)' = 10 * [mm]c_{1}[/mm] * 1 + [mm]\bruch{1}{500}[/mm]
>  
> 0 = 10 * [mm]c_{1}[/mm] * 1 + [mm]\bruch{1}{500}[/mm]
>  
> - [mm]\bruch{1}{500}[/mm] = 10 * [mm]c_{1}[/mm]
>  
> [mm]\Rightarrow c_{1}[/mm] = - [mm]\bruch{1}{5000}[/mm]
>  
> und [mm]-c_{1}[/mm] = [mm]c_{2} \Rightarrow c_{2}[/mm] = [mm]\bruch{1}{5000}[/mm]
>  
>
> Sollte so stimmen oder ?


Das stimmt so. [ok]


>  Habe dafür keine Teillösungen!
>  


Gruss
MathePower

Bezug
                                
Bezug
DGL 2Ordnung AWP: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:31 Sa 26.06.2010
Autor: Kerberos2008

Danke für die Hilfe, die Wärme macht mir zu schaffen (Schunt Dachgeschoss) - da macht man schnell mal Flüchtigkeitsfehler oder vergisst die leichtesten Dinge :(



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]