www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - DB - komplexe Funktion
DB - komplexe Funktion < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DB - komplexe Funktion: Tipp
Status: (Frage) beantwortet Status 
Datum: 21:28 Mo 03.06.2013
Autor: photonendusche

Aufgabe
Ermitteln Sie für die Terme [mm] f_{1}(z) [/mm] und [mm] f_{2}(z) [/mm] mit [mm] f_{1}(z):=ln(i-z)-ln(i+z), f_{2}(z):=ln(1+iz)-ln(1-iz) [/mm] möglichst große Gebiete [mm] D_{1} [/mm] und [mm] D_{2}, [/mm] so dass der Term [mm] f_{1}(z) (f_{2}(z)) [/mm] für z [mm] \in D_{1} [/mm] (z [mm] \in D_{2}) [/mm] definiert ist.

Ein schönes Gebiet wäre z.B. der Raum [mm] \IC, [/mm]
aber ich glaube nicht, dass dies gesucht ist.
Wie gehe ich an solch eine Aufgabe ran? Wie sieht die Lösung aus?

        
Bezug
DB - komplexe Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:16 Mo 03.06.2013
Autor: M.Rex

Hallo

> Ermitteln Sie für die Terme [mm]f_{1}(z)[/mm] und [mm]f_{2}(z)[/mm] mit
> [mm]f_{1}(z):=ln(i-z)-ln(i+z), f_{2}(z):=ln(1+iz)-ln(1-iz)[/mm]
> möglichst große Gebiete [mm]D_{1}[/mm] und [mm]D_{2},[/mm] so dass der Term
> [mm]f_{1}(z) (f_{2}(z))[/mm] für z [mm]\in D_{1}[/mm] (z [mm]\in D_{2})[/mm]
> definiert ist.
> Ein schönes Gebiet wäre z.B. der Raum [mm]\IC,[/mm]
> aber ich glaube nicht, dass dies gesucht ist.
> Wie gehe ich an solch eine Aufgabe ran? Wie sieht die
> Lösung aus?

Überlege mal, was im Argument des Logarithmusses stehen darf, bzw was du ausschließen musst. Damit kannst du dann den maximalen Definitionsbereich bestimmen.

Marius

Bezug
                
Bezug
DB - komplexe Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:30 Mo 03.06.2013
Autor: photonendusche

Der Logarithmus darf nicht negativ werden.

Bezug
                        
Bezug
DB - komplexe Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 07:42 Di 04.06.2013
Autor: fred97


> Der Logarithmus darf nicht negativ werden.

Unsinn !

Ich gehe davon aus, dass mit $ln$  der Hauptzweig des Log. gemeint ist.

  $ln(w)$  ist definiert für alle w [mm] \in \IC [/mm] mit w [mm] \ne [/mm] 0.

Dann ist z.B. $ln(z+4711)$ def. für alle z [mm] \in \IC [/mm] mit z [mm] \ne [/mm] -4711

FRED


Bezug
                                
Bezug
DB - komplexe Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:54 Mi 05.06.2013
Autor: photonendusche

Danke :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]