Ch. Polynom Schachbrettmatrix < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:24 Mo 19.04.2010 | Autor: | r2d2 |
Aufgabe | Gegeben ist eine Schachbrettmatrix A:= [mm]\pmat{ 1 & 0 & ... \\ 0 & 1 & ... \\ ... & ... & ... } \in \IK^{n\times n} [/mm] für Char K = 0. Zeige, dass die ersten beiden Spalten von A Eigenvektoren dieser Matrix sind. Bestimme den Defekt von A. Gib dann ohne weitere Rechnung mit Hilfe der Überlegung aus Satz.xy das charakteristische Polynom der Matrix A an.
Satz.xy: Besagt, dass die geometrische Vielfachheit eines Eigenvektors kleiner oder gleich der algebraischen ist; bei [mm]1 \le n = dim V < \infty[/mm])
|
Hallo,
die ersten beiden Fragen sind mir soweit klar. Bei der 3.) weiß ich nicht weiter. Da ich mir nicht sicher bin und zur Vollständigkeit hier auch die ersten beiden:
1) Wenn man die Spalten mit der Matrix multipliziert sieht man gut, dass diese EV sind. Die erste Spalte ist ein Eigenvektor zum EW n/2 bei geraden und (n+1)/2 bei ungeraden. Die zweite zum EW n/2 bei geraden und (n+1)/2 bei ungeradem n.
2) Der Defekt müsste (angenommen dim V >1 - aber das ist für das Schachbrettmuster sowieso notwendig) nach dem Rangsatz:
def A = dim V - rg A = n - 2 betragen.
3) hier weiß ich nicht weiter. Ich hab keine Ahnung wie ich von diesem Satz auf das charakteristische Polynom schließen soll.
Für das charakteristiche Polynom bräuchte ich doch die Eigenwerte oder?
Aber ich darf mir doch nichts ausrechnen...
LG r2d2
Ich habe diese Frage in keinem anderen Forum gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 03:06 Di 20.04.2010 | Autor: | felixf |
Moin!
> Gegeben ist eine Schachbrettmatrix A:= [mm]\pmat{ 1 & 0 & ... \\ 0 & 1 & ... \\ ... & ... & ... } \in \IK^{n\times n}[/mm]
> für Char K = 0. Zeige, dass die ersten beiden Spalten von
> A Eigenvektoren dieser Matrix sind. Bestimme den Defekt von
> A. Gib dann ohne weitere Rechnung mit Hilfe der Überlegung
> aus Satz.xy das charakteristische Polynom der Matrix A an.
>
> Satz.xy: Besagt, dass die geometrische Vielfachheit eines
> Eigenvektors kleiner oder gleich der algebraischen ist; bei
> [mm]1 \le n = dim V < \infty[/mm])
>
> Hallo,
>
> die ersten beiden Fragen sind mir soweit klar. Bei der 3.)
> weiß ich nicht weiter. Da ich mir nicht sicher bin und zur
> Vollständigkeit hier auch die ersten beiden:
>
> 1) Wenn man die Spalten mit der Matrix multipliziert sieht
> man gut, dass diese EV sind. Die erste Spalte ist ein
> Eigenvektor zum EW n/2 bei geraden und (n+1)/2 bei
> ungeraden. Die zweite zum EW n/2 bei geraden und (n+1)/2
> bei ungeradem n.
Genau. Damit hast du zwei verschiedene von 0 verschiedene Eigenwerte.
> 2) Der Defekt müsste (angenommen dim V >1 - aber das ist
> für das Schachbrettmuster sowieso notwendig) nach dem
> Rangsatz:
> def A = dim V - rg A = n - 2 betragen.
Genau.
> 3) hier weiß ich nicht weiter. Ich hab keine Ahnung wie
> ich von diesem Satz auf das charakteristische Polynom
> schließen soll.
> Für das charakteristiche Polynom bräuchte ich doch die
> Eigenwerte oder?
Du hast:
- einen positiven Eigenwert mit geom. Vielfachheit [mm] $\ge [/mm] 1$;
- einen negativen Eigenwert mit geom. Vielfachheit [mm] $\ge [/mm] 1$;
- den Eigenwert 0 mit geom. Vielfachheit $n - 2$.
Damit kannst du alle Eigenwerte mit geometrischen und algebraischen Vielfachheiten angeben. Und daraus bekommst du das charakteristische Polynom.
Falls du immer noch nicht drauf kommst, zwei Fragen an dich:
1) Kann es noch weitere Eigenwerte geben?
2) Kannst du etwas ueber die geometrischen Vielfachheiten aussagen? Kann die Summe dieser $> n$ sein?
3) Kannst du etwas ueber die algebraischen Vielfachheiten aussagen? Kann die Summe dieser $> n$ sein?
> Aber ich darf mir doch nichts ausrechnen...
Wie meinst du das?
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:00 Di 20.04.2010 | Autor: | r2d2 |
Super, danke!
Mithilfe deiner Fragen bin ich dahinter gekommen:
[mm]\lambda_1=0, \lambda_2=\bruch{n}{2}[/mm] od. [mm]\bruch{n+1}{2}, \lambda_3=\bruch{n}{2}[/mm] od. [mm]\bruch{n-1}{2}[/mm]
also da [mm] grad(\chi_A)=n [/mm] gilt [mm] k_1 + k_2 +k_3 \le grad(\chi_A)=n [/mm], wobei die [mm] k_i [/mm] den algebraischen Vielfachheiten der Eigenwerte entspricht.
Deswegen ist die algebraische Vielfachheit ([mm]k_1[/mm]) vom EW 0 gleich der geometrischen Vielfachheit (n-2), weil [mm]k_2,k_3 \ge 1[/mm].
Deswegen kann es auch nicht mehr Eigenwerte geben, da sonst die obige Summe nicht stimmt.
Bei geraden n fallen [mm]k_2[/mm] und [mm]k_3[/mm] zusammen.
[mm]n \in gerade: \chi_A=x^{n-2}*(\bruch{n}{2}-x)^{2}[/mm]
[mm]n \in ungerade: \chi_A=x^{n-2}*(\bruch{n+1}{2}-x)*(\bruch{n-1}{2}-x)[/mm]
oder allgemein:
[mm]\chi_A=x^{n-2}*(\bruch{n+(n mod 2)}{2}-x)*(\bruch{n-(n mod 2)}{2}-x)[/mm]
LG
|
|
|
|