Borelsche Sigma-Algebra < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:17 Di 28.06.2005 | Autor: | Hildie |
Hallo!
Ich habe da mal eine Frage zur Borelschen Sigma-Algebra, die wir als links halb offene Intervalle S = ]a,b] mit a kleiner gleich b in der Menge der reellen Zahlen definiert haben.
Wie zeige ich denn, dass etwas eine Borelsche, also tatsächlich die kleinste Sigma-Algebra ist?
Ich habe irgendeinen Ansatz, da sagt man, dass F-alpha Sigma-Algebras sind, die S enthalten also ist alpha ein Element des Intervalls S. Die Schnittmenge dieser Fs ist eine Sigma-Algebra, also muss es die kleinste sein.
So weit so gut. Aber ist das schon alles? Das kann ich ja nicht einfach so behaupten??? Irgendwie... fehlt da doch ein Schritt, oder?
Wäre toll, wenn mir jemand helfen könnte!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:51 Mi 29.06.2005 | Autor: | SEcki |
> Hallo!
> Ich habe da mal eine Frage zur Borelschen Sigma-Algebra,
> die wir als links halb offene Intervalle S = ]a,b] mit a
> kleiner gleich b in der Menge der reellen Zahlen definiert
> haben.
Ich hoffe doch: die davon erzeugte Sigma-Algebra, oder?
> Wie zeige ich denn, dass etwas eine Borelsche, also
> tatsächlich die kleinste Sigma-Algebra ist?
Was willst du genau zeigen? Man definiert die Borelsche-Sigma-Algebra ja bzgl. der Topologie von [m]\IR[/m], da kann man dann verschiedene Versionen angeben, die oben ist eine davon. Sollst du eine, andere, äquivalente Darstellung zeigen? Oder von einer Menge zeigen, daß es die Borell-Sigma-Algebra ist. Oder wie?
> Ich habe irgendeinen Ansatz, da sagt man, dass F-alpha
> Sigma-Algebras sind, die S enthalten also ist alpha ein
> Element des Intervalls S. Die Schnittmenge dieser Fs ist
> eine Sigma-Algebra, also muss es die kleinste sein.
Was sind die F-Alphas?
> So weit so gut. Aber ist das schon alles? Das kann ich ja
> nicht einfach so behaupten??? Irgendwie... fehlt da doch
> ein Schritt, oder?
Was willst du denn eigentlich zeigen?
SEcki
|
|
|
|