www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Biquadratische Gleichungen
Biquadratische Gleichungen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Biquadratische Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:12 Di 14.08.2012
Autor: hase-hh

Aufgabe
Was ist eine biquadratische Funktion?

Moin Moin!

Vor ein paar Tagen habe ich gelesen, dass ein Polynom 4. Grades immer eine biquadratische Funktion ist.

Bisher habe ich biquadratische Gleichungen als Polynome 4. Grades kennengelernt, die man durch Substitution von [mm] x^2 [/mm] = z  in eine quadratische Gleichung umformen kann.

Sind also andere Polynome 4. Grades keine biquadratischen Funktionen?
Meine Idee, ein Polynom 4. Grades hat ja (bis zu) vier Nullstellen.

Ich könnte es also zerlegen in f(x) = [mm] a*(x-n_1)*(x-n_2)*(x-n_3)*(x-n_4) [/mm]

bzw. f(x)= [mm] a*(x^2-(n_1+n_2)*x+ n_1*n_2)*(x^2-(n_3+n_4)*x+ n_3*n_4) [/mm]

Dann hätte ich zwei Faktoren = zwei quadratisceh Funktionen, die mit einander multipliziert mglw. eine biquadratische Funktion ergeben???


Also nochmal die Frage:   Was ist eine biquadratisceh Funktion?  bzw. Sind alle Polynome 4. Grades biquadratiswche Funtionen?


Danke & Gruß

















        
Bezug
Biquadratische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:00 Di 14.08.2012
Autor: reverend

Hallo hase-hh,

alle Polynome 4. Grades sind biquadratische Funktionen. Die Bezeichnung bedeutet nichts anderes.

Im übrigen sind aber alle Polynome 4. Grades zerlegbar, nämlich mindestens in zwei Polynome 2. Grades (also quadratische Funktionen), sogar dann, wenn sie keine einzige Nullstelle haben.

Beispiele:
[mm] x^4-x^3-x^2+6=(x^2+2x+2)(x^2-3x+3) [/mm]
[mm] x^4+4=(x^2+2x+2)(x^2-2x+2) [/mm]
[mm] x^4+2x^2+x+2=(x^2+x+1)(x^2-x+2) [/mm]

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]