www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Binomialkoeffizienten
Binomialkoeffizienten < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialkoeffizienten: kombinatorisches Rechnen
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:02 So 12.02.2012
Autor: clemenum

Aufgabe
Interpretieren Sie die Multiplikation zweier Binomialkoeffizienten ${a [mm] \choose [/mm] b} [mm] \cdot {d\choose e} [/mm] (a,b,c,d [mm] \in \mathbb{N}) [/mm] $kombinatorisch und versuchen Sie danach ohne Einsetzen in die Definition z.B. [mm] ${3\choose 5}\cdot {8\choose 2}$ [/mm]  zu berechnen.

Ahm.... ich verstehe die Aufgabe nicht so ganz.

Wir dürfen voraussetzen, was der Binomialkoeffizient (kombinatorisch) bedeutet. Soweit ich weiß, genügt es hier eine Frage zu formulieren, auf die die Antwort die Angabe ist.

Die Frage soll von folgender Art sein: "Wie viele b elemntigen Teilmengen einer a-elementigen menge gehen in eine e-elementige Teilmenge einer... "

Ich habe mit dieser vorstellung aber gewisse probleme und bitte euch um hilfe.

        
Bezug
Binomialkoeffizienten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:39 Mo 13.02.2012
Autor: clemenum

Eine Frage: Habe ich zu wenig beigetragen, dass mir keiner antwortet?

Das Problem: Ich kann mir unter einer Verknüpfung von Binomialkoeffizienten nur wenig vorstellen.  Wie kann ich das Malzeichen kombinatorisch deuten?

Bezug
        
Bezug
Binomialkoeffizienten: Antwort
Status: (Antwort) fertig Status 
Datum: 09:04 Mo 13.02.2012
Autor: statler

Guten Morgen!

> Interpretieren Sie die Multiplikation zweier
> Binomialkoeffizienten [mm]{a \choose b} \cdot {d\choose e} (a,b,c,d \in \mathbb{N}) [/mm]kombinatorisch
> und versuchen Sie danach ohne Einsetzen in die Definition
> z.B. [mm]{3\choose 5}\cdot {8\choose 2}[/mm]  zu berechnen.
>  Ahm.... ich verstehe die Aufgabe nicht so ganz.

Wenn dich das tröstet: Ich auch nicht! Immerhin ist das Ergebnis deines Zahlenbeispiels 0, weil [mm] \vektor{3 \\ 5} [/mm] = 0 ist. Vielleicht meinst du aber [mm] \vektor{5 \\ 3}. [/mm]
Dann fällt mir ein, daß bei der hypergeometrischen Verteilung ein Produkt von Binomialkoeffizienten auftaucht. Wenn du aus 13 numerierten Kugeln 5 ziehst und nach der Anzahl der Möglichkeiten fragst, bei denen 3 Kugeln Nummern von 1 bis 5 tragen, dann ist die Anwort gerade [mm] \vektor{5 \\ 3}\cdot\vektor{8 \\ 2}. [/mm]
Das ist eine kombinatorische Interpretation, aber keine echte Berechnungshilfe. Oder?
Gruß aus HH-Harburg
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]