www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Bijektivität und Umkehrfunktio
Bijektivität und Umkehrfunktio < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bijektivität und Umkehrfunktio: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:11 So 13.03.2011
Autor: Kueken

Hallo,

ich habe eine Frage: Wenn ich eine Funktion habe und ich will zeigen, dass sie bijektiv ist, kann ich dann einfach zeigen dass es eine Umkehrfunktion gibt mit Definitionbereich der Umkehrfkt = Bildbereich der Funktion und Bildbereich der Umkehrfkt = Def.bereich der Funktion?

Also an einem Beispiel.
Ich will zeigen dass die Funktion f(x) =2x bijektiv ist und sie geht von R nach R
Dann könnte ich doch einfach die Umkehrfunktion bestimmen:
[mm] F^{-1} [/mm] = [mm] \bruch{1}{2}x [/mm] und dazu sagen, dass diese Funktion ebenfalls von R nach R geht. Reicht das als Beweis? Ich glaube nicht so ganz, aber warum dann nicht...

Liebe Grüße
Kerstin

        
Bezug
Bijektivität und Umkehrfunktio: Antwort
Status: (Antwort) fertig Status 
Datum: 21:16 So 13.03.2011
Autor: kamaleonti

Hi Kerstin,
> Hallo,
>  
> ich habe eine Frage: Wenn ich eine Funktion habe und ich
> will zeigen, dass sie bijektiv ist, kann ich dann einfach
> zeigen dass es eine Umkehrfunktion gibt mit
> Definitionbereich der Umkehrfkt = Bildbereich der Funktion
> und Bildbereich der Umkehrfkt = Def.bereich der Funktion?

Jo.

>  
> Also an einem Beispiel.
>  Ich will zeigen dass die Funktion f(x) =2x bijektiv ist
> und sie geht von R nach R
>  Dann könnte ich doch einfach die Umkehrfunktion
> bestimmen:
>  [mm]F^{-1}[/mm] = [mm]\bruch{1}{2}x[/mm] und dazu sagen, dass diese Funktion
> ebenfalls von R nach R geht. Reicht das als Beweis? Ich
> glaube nicht so ganz, aber warum dann nicht...

Das sollte reichen. Bijektivität der Funktion [mm] f:X\to [/mm] Y ist äquivalent zu Existenz einer eindeutigen Umkehrfunktion [mm] g:Y\to [/mm] X mit [mm] g\circ f=ID_x [/mm] und [mm] f\circ g=ID_y [/mm]

>  
> Liebe Grüße
>  Kerstin

LG

Bezug
                
Bezug
Bijektivität und Umkehrfunktio: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:19 So 13.03.2011
Autor: Kueken

Oh super, dankeschön abermals =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]