www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebraische Geometrie" - Bezout
Bezout < Algebraische Geometrie < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebraische Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bezout: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 03:41 So 27.12.2015
Autor: questionpeter

Aufgabe
Bestimme die (nach Bezout) vier Schnittpunkte in [mm] IP_2(\IC) [/mm] der zwei Quadriken [mm] Q_1: x^2+2xy+z^2=0 [/mm] und [mm] Q_2:x^2-y^2+z^2=0 [/mm]

Hallo zusammen,

ich sitze vo diese aufgabe und komme nicht weiter. daher hoffe ich auf eure Hilfe.

ich habe folgendes gemacht:

ich habe die beiden Quadriken gleichgesetzt:

[mm] x^2+2xy+z^2=x^2-y^2+z^2 [/mm]

nach umformen erhalte dann: y=-2x

das habe in [mm] Q_1 [/mm] eingesetzt: [mm] x^2+2x\cdot(-2x)+z^2=0 [/mm]
[mm] \Rightarrow z=\pm\wurzel{3}x [/mm]

damit habe ich dann [mm] Q_1\cap Q_2={[1:-2:\wurzel{3}], [1:-2:-\wurzel{3}]} [/mm]

stimmt das? falls ja wie finde ich die anderen Schnittpunkte?
Dankeschön im voraus.

        
Bezug
Bezout: Antwort
Status: (Antwort) fertig Status 
Datum: 08:37 So 27.12.2015
Autor: fred97


> Bestimme die (nach Bezout) vier Schnittpunkte in [mm]IP_2(\IC)[/mm]
> der zwei Quadriken [mm]Q_1: x^2+2xy+z^2=0[/mm] und
> [mm]Q_2:x^2-y^2+z^2=0[/mm]
>  Hallo zusammen,
>  
> ich sitze vo diese aufgabe und komme nicht weiter. daher
> hoffe ich auf eure Hilfe.
>  
> ich habe folgendes gemacht:
>  
> ich habe die beiden Quadriken gleichgesetzt:
>  
> [mm]x^2+2xy+z^2=x^2-y^2+z^2[/mm]
>  
> nach umformen erhalte dann: y=-2x
>  
> das habe in [mm]Q_1[/mm] eingesetzt: [mm]x^2+2x\cdot(-2x)+z^2=0[/mm]
>  [mm]\Rightarrow z=\pm\wurzel{3}x[/mm]
>  
> damit habe ich dann [mm]Q_1\cap Q_2={[1:-2:\wurzel{3}], [1:-2:-\wurzel{3}]}[/mm]
>  
> stimmt das? falls ja wie finde ich die anderen
> Schnittpunkte?
>  Dankeschön im voraus.


Komisch.....

hat denn das Gleichungssystem

  [mm]x^2+2xy+z^2=0[/mm]

  [mm]x^2-y^2+z^2=0[/mm]

nicht unendlich viele Lösungen ?

Ist [mm] $t\in \IR$ [/mm] und setzt man

  $x=t, y=-2t$ und $z= [mm] \pm \wurzel{3}t$, [/mm]

so liefert dies eine Lösung des obigen Systems.

Vielleicht hab ich aber auch etwas falsch verstanden....

FRED

Bezug
        
Bezug
Bezout: Antwort
Status: (Antwort) fertig Status 
Datum: 10:17 So 27.12.2015
Autor: abakus


>  
> [mm]x^2+2xy+z^2=x^2-y^2+z^2[/mm]
>  
> nach umformen erhalte dann: y=-2x

Lass mich raten: Du hast während der Umformung auch mal beide Seiten durch y geteilt? Damit sind dir Lösungen des Gleichungssystems verloren gegangen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebraische Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]