www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Bezout-Koeffizienten und ggT
Bezout-Koeffizienten und ggT < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bezout-Koeffizienten und ggT: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:06 Sa 07.09.2013
Autor: jhx

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

hallo

ich habe für die folgende behauptung nur eine grobe skizze und wollte es mal vollständig aufschreiben. vllt kann mir hier ja jemand sagen, ob das so richtig ist.

behauptung: seien $a,b\in\mathbb{Z}$ nicht beide $=0$. dann gilt: $a\mathbb{Z}+b\mathbb{Z}=ggT(a,b)\mathbb{Z}$.

beweis: $(i)$ Zu zeigen: $\exists d\in\mathbb{Z}: a\mathbb{Z}+b\mathbb{Z}=d\mathbb{Z}$.
setze $d:=min(\mathbb{N}\cap(a\mathbb{Z}+b\mathbb{Z}))$.

$"\supset:"$ sei$ v=dx\in d\mathbb{Z}$. wegen $d\in a\mathbb{Z}+b\mathbb{Z}$ gibt es $u,v\in\mathbb{Z}$, so dass $d=au+bv$. daraus folgt $dx=aux+bvx\in a\mathbb{Z}+b\mathbb{Z}$.

$"\subset":$ sei $v=ax+by\in a\mathbb{Z}+b\mathbb{Z}$. di division mit rest liefert: $ax+by=dq+r$, wobei $q\in\mathbb{Z}$ und $r\in\{0,1,...,d-1\}$ und wegen $d\mathbb{Z}\subset a\mathbb{Z}+b\mathbb{Z}$ auch $ax+by-dq=r\in a\mathbb{Z}+b\mathbb{Z}$. aus der minimalität von d folgt $r=0$. also wird $ax+by$ von d geteilt und somit ist $ax+by\in d\mathbb{Z}$.

$(ii)$ zu zeigen ist noch: d=ggT(a,b).

das funktioniert wieder durch division mit rest:
$a=dq+r\Rightarrow a-dq=r\in a\mathbb{Z}+b\mathbb{Z$ und wegen der minimalität von d ist $r=0$. also wird a von d geteilt.

dass b von d geteilt wird ist analog beweisbar.

sei $d'$ nun ein gemeinsamer teiler von a und b. dann teilt teilt d' auch alle elemente von $a\mathbb{Z}+b\mathbb{Z}$ und insbesondere $d\in a\mathbb{Z}+b\mathbb{Z}$.

ist das so richtig?

lg
J


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bezout-Koeffizienten und ggT: Antwort
Status: (Antwort) fertig Status 
Datum: 11:45 So 08.09.2013
Autor: Teufel

Hi!

Sieht sehr gut aus. Am Ende meinst du aber bestimmt

"sei $ d' $ nun ein gemeinsamer teiler von a und b. dann teilt teilt d' auch alle elemente von $ [mm] a\mathbb{Z}+b\mathbb{Z} [/mm] $ und insbesondere $ d' $ teilt $d$."

oder?

Bezug
                
Bezug
Bezout-Koeffizienten und ggT: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:23 So 08.09.2013
Autor: jhx

ja genau. war nur etwas blöd formuliert.

lg


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]