www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Beweisen d. vollst. Induktion
Beweisen d. vollst. Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweisen d. vollst. Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:57 Mi 28.03.2012
Autor: fabian1991

Aufgabe
Beweisen Sie durch vollständige Induktion die Ungleichung:
Für alle n €N, [mm] n\ge [/mm] 4 gilt: [mm] 2^{n} [/mm] <n!

Hi,
oben steht die Frage, was ich bisher habe:
I.Anfang:
4 eingesetzt, 16 < 24 (w)
II. Schritt:
für ein beliebiges, aber festes n€N, [mm] \ge [/mm] 4 gilt:
[mm] 2^{n} [/mm] <n!
(wo ist der Sinn bei II.??)
III.
[mm] 2^{n+1}=2^{n} [/mm] * 2
(für [mm] 2^{n}-> [/mm] n! eingesetzt)
<2*n!

jetzt muss ich dich das 2*n! irgendwie auf (n+1)! bringen, oder?

ich hab keine Ahnung wie ich weiter vorgehen sollte. Bitte um Hilfe :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweisen d. vollst. Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:07 Mi 28.03.2012
Autor: fred97


> Beweisen Sie durch vollständige Induktion die
> Ungleichung:
>  Für alle n €N, [mm]n\ge[/mm] 4 gilt: [mm]2^{n}[/mm] <n!
>  Hi,
> oben steht die Frage, was ich bisher habe:
>  I.Anfang:
>  4 eingesetzt, 16 < 24 (w)
>  II. Schritt:
>  für ein beliebiges, aber festes n€N, [mm]\ge[/mm] 4 gilt:
>  [mm]2^{n}[/mm] <n!
>  (wo ist der Sinn bei II.??)

Das ist die Induktionsvoraussetzung !


>  III.
>  [mm]2^{n+1}=2^{n}[/mm] * 2
>   (für [mm]2^{n}->[/mm] n! eingesetzt)
>  <2*n!
>  
> jetzt muss ich dich das 2*n! irgendwie auf (n+1)! bringen,
> oder?

Ja, zeige: 2*n! [mm] \le [/mm] (n+1)!

Dann bist Dufertig.

FRED

>  
> ich hab keine Ahnung wie ich weiter vorgehen sollte. Bitte
> um Hilfe :)
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
        
Bezug
Beweisen d. vollst. Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 Mi 28.03.2012
Autor: Olli1968

Du bist ja fast fertig. Zu zeigen ist, dass
[mm] 2*n!<(n+1)![/mm]
mit [mm] (n+1)! = (n+1)*n![/mm] und ein vergleich mit [mm] 2*n! [/mm] kommt man bestimmt drauf.  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]