www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Beweis von Kern
Beweis von Kern < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis von Kern: Zeige: Vektor liegt im Kern
Status: (Frage) beantwortet Status 
Datum: 23:09 So 09.12.2018
Autor: asg

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Es seien $A \in {\IK}^{m \times n}}, b \in {\IK}^m$ und $x_1, x_2\in {\IK}^n$, so dass
$$A \cdot x_1 = A \cdot x_2=b$$
1) Zeige, f. a. $z_1 \in Kern(A)$ gilt $A \cdot (x_1+z_1)=b$.

2) Zeige, $z_2=x_1-x_2$ liegt in $Kern(A)$

Hallo zusammen,

ich bin etwas irritiert über den Schwierigkeitsgrad der Aufgaben. Sind die Beweise wirklich so einfach zu führen oder übersehe ich etwas?

Mein Beweis ist wie folgt:

zu 1)
$A \cdot (x_1+z_1)= A \cdot  x_1 + A \cdot z_1 \stackrel{Def Kern}{=} A \cdot x_1 + 0= A \cdot x_1 =b$.

zu 2)
$A \cdot x_1= A \cdot x_2 \Rightarrow x_1=x_2 \Rightarrow z_2=x_1-x_2=0 \stackrel{Def Kern}{\Rightarrow} z_2 \in Kern(A) $.

Ich werde die Beweise etwas sauberer aufschreiben, aber eigentlich sollten sie doch richtig sein, oder?

Danke vorab

Viele Grüße

Asg


        
Bezug
Beweis von Kern: Antwort
Status: (Antwort) fertig Status 
Datum: 07:20 Mo 10.12.2018
Autor: Gonozal_IX

Hiho,

> ich bin etwas irritiert über den Schwierigkeitsgrad der
> Aufgaben. Sind die Beweise wirklich so einfach zu führen
> oder übersehe ich etwas?

1: Ja, die Beweise sind einfach zu führen
2: Ja, du übersiehst etwas…

>  
> Mein Beweis ist wie folgt:
>  
> zu 1)
>  [mm]A \cdot (x_1+z_1)= A \cdot x_1 + A \cdot z_1 \stackrel{Def Kern}{=} A \cdot x_1 + 0= A \cdot x_1 =b[/mm].

[ok]
  

> zu 2)
>  [mm]A \cdot x_1= A \cdot x_2 \Rightarrow x_1=x_2 \Rightarrow z_2=x_1-x_2=0 \stackrel{Def Kern}{\Rightarrow} z_2 \in Kern(A) [/mm].

Gruselig!
Warum sollte die erste Implikation gelten?
Sind etwa alle Matrizzen injektiv? Ich verrate dir die Antwort: Nein!

Du weißt doch: [mm] $Ax_1 [/mm] = [mm] Ax_2$ [/mm]  
Nun subtrahiere mal auf beiden Seiten [mm] $Ax_2$… [/mm]

Gruß,
Gono

> Ich werde die Beweise etwas sauberer aufschreiben, aber
> eigentlich sollten sie doch richtig sein, oder?
>  
> Danke vorab
>  
> Viele Grüße
>  
> Asg
>  


Bezug
                
Bezug
Beweis von Kern: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:12 Mo 10.12.2018
Autor: asg

Guten Morgen Gono,

>  1: Ja, die Beweise sind einfach zu führen
>  2: Ja, du übersiehst etwas…

> > zu 2)
>  >  [mm]A \cdot x_1= A \cdot x_2 \Rightarrow x_1=x_2 \Rightarrow z_2=x_1-x_2=0 \stackrel{Def Kern}{\Rightarrow} z_2 \in Kern(A) [/mm].
>  
> Gruselig!
>  Warum sollte die erste Implikation gelten?
>  Sind etwa alle Matrizzen injektiv? Ich verrate dir die
> Antwort: Nein!
>  

Ups! Die Implikation ist in der Tat gruselig. Sie gilt selbst bei reinen reellen Zahlen nicht. $A$ könnte z. B. der Nullvektor oder die Einheitsvektor sein.

> Du weißt doch: [mm]Ax_1 = Ax_2[/mm]  
> Nun subtrahiere mal auf beiden Seiten [mm]Ax_2[/mm]…

Danke für den Tipp.
[mm]A \cdot x_1= A \cdot x_2 \Leftrightarrow A \cdot x_1 - A \cdot x_2 = 0 \Leftrightarrow A \cdot (x_1-x_2)=0 \Rightarrow A \cdot (z_2)=0 \stackrel{Def Kern}{\Rightarrow} z_2 \in Kern(A) [/mm].


Nun müsste es korrekt sein, richtig?

Viele Grüße
Asg

Bezug
                        
Bezug
Beweis von Kern: Antwort
Status: (Antwort) fertig Status 
Datum: 09:23 Mo 10.12.2018
Autor: fred97


> Guten Morgen Gono,
>  
> >  1: Ja, die Beweise sind einfach zu führen

>  >  2: Ja, du übersiehst etwas…
>  
> > > zu 2)
>  >  >  [mm]A \cdot x_1= A \cdot x_2 \Rightarrow x_1=x_2 \Rightarrow z_2=x_1-x_2=0 \stackrel{Def Kern}{\Rightarrow} z_2 \in Kern(A) [/mm].
>  
> >  

> > Gruselig!
>  >  Warum sollte die erste Implikation gelten?
>  >  Sind etwa alle Matrizzen injektiv? Ich verrate dir die
> > Antwort: Nein!
>  >  
>
> Ups! Die Implikation ist in der Tat gruselig. Sie gilt
> selbst bei reinen reellen Zahlen nicht. [mm]A[/mm] könnte z. B. der
> Nullvektor oder die Einheitsvektor sein.
>  
> > Du weißt doch: [mm]Ax_1 = Ax_2[/mm]  
> > Nun subtrahiere mal auf beiden Seiten [mm]Ax_2[/mm]…
>  
> Danke für den Tipp.
>  [mm]A \cdot x_1= A \cdot x_2 \Leftrightarrow A \cdot x_1 - A \cdot x_2 = 0 \Leftrightarrow A \cdot (x_1-x_2)=0 \Rightarrow A \cdot (z_2)=0 \stackrel{Def Kern}{\Rightarrow} z_2 \in Kern(A) [/mm].
>  
>
> Nun müsste es korrekt sein, richtig?

Ja, jetzt stimmts.

>  
> Viele Grüße
>  Asg


Bezug
                                
Bezug
Beweis von Kern: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:44 Mo 10.12.2018
Autor: asg

Guten Morgen zusammen,

> > > Du weißt doch: [mm]Ax_1 = Ax_2[/mm]  
> > > Nun subtrahiere mal auf beiden Seiten [mm]Ax_2[/mm]…
>  >  
> > Danke für den Tipp.
>  >  [mm]A \cdot x_1= A \cdot x_2 \Leftrightarrow A \cdot x_1 - A \cdot x_2 = 0 \Leftrightarrow A \cdot (x_1-x_2)=0 \Rightarrow A \cdot (z_2)=0 \stackrel{Def Kern}{\Rightarrow} z_2 \in Kern(A) [/mm].
>  
> > Nun müsste es korrekt sein, richtig?
>  
> Ja, jetzt stimmts.
>  >  

Vielen Dank euch beiden!

Liebe Grüße

Asg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]