www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Beweis im Koordinatensystem
Beweis im Koordinatensystem < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis im Koordinatensystem: Berechnung Winkel Alpha
Status: (Frage) beantwortet Status 
Datum: 12:32 So 30.10.2005
Autor: RuffY

Haloa Leutz,

ich habe eine Aufgabe, bei der ich in Teilaufgabe b) folgendes beweisen soll:

[mm] (\cos \alpha_{1})^{2}+(\cos \alpha_{2})^{2}+(\cos \alpha_{3})^{2}=1 [/mm]

Die angegebenen Winkel beziehen sich auf Winkel, die von einem belibigen Vektor und den Koordinatenachsen
eingeschlossen werden! Ich kann damit leider nichts anfangen, vielleich könnt ihr mir sagen, wie ich an die Aufgabe heran gehen sollte und mir einen Lösungsweg zeigen?!
Vielen Dank!

Sebastian


        
Bezug
Beweis im Koordinatensystem: "Antwort"
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:56 So 30.10.2005
Autor: Pollux

Hi,
du kennst doch bestimmt die Formel [mm] sin^2 \alpha_1 [/mm] + [mm] cos^2 \alpha_2 [/mm] = 1 am Einheitskreis. Versuch mal ob du damit weiterkokmmst...

Bezug
                
Bezug
Beweis im Koordinatensystem: Das klappt nicht!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:14 So 30.10.2005
Autor: Loddar

Hallo Pollux!


Deine genannte Beziehung (trigonometrischer Pythagoras) gilt aber nur für gleiche Winkel!


Gruß
Loddar


Bezug
        
Bezug
Beweis im Koordinatensystem: Skalarprodukt!
Status: (Antwort) fertig Status 
Datum: 15:24 So 30.10.2005
Autor: Zwerglein

Hi, Ruffy,

die einzelnen Winkel des Vektors [mm] \vektor{a \\ b \\c} [/mm] mit den Koordinatenachsen (Richtungswinkel) berechnet man doch mit Hilfe des Skalarprodukts.
Z.B. für die [mm] x_{1}-Achse: [/mm]

[mm] cos(\alpha_{1}) [/mm] = [mm] \bruch{a}{\wurzel{a^{2}+b^{2}+c^{2}}} [/mm]

Daraus ergibt sich natürlich:
[mm] (cos(\alpha_{1}))^{2} [/mm] = [mm] \bruch{a^{2}}{a^{2}+b^{2}+c^{2}} [/mm]

Entsprechend für die anderen Achsen:

[mm] (cos(\alpha_{2}))^{2} [/mm] = [mm] \bruch{b^{2}}{a^{2}+b^{2}+c^{2}} [/mm]

bzw.

[mm] (cos(\alpha_{3}))^{2} [/mm] = [mm] \bruch{c^{2}}{a^{2}+b^{2}+c^{2}} [/mm]

Naja: Und wenn Du nun alle 3 addierst, kommt 1 raus!

mfG!
Zwerglein


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]