www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Beweis: Summe kollin. Punkte
Beweis: Summe kollin. Punkte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis: Summe kollin. Punkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:16 Mi 16.04.2008
Autor: m_s

Aufgabe
Es seien a1; a2; a3; a4 nicht kollineare und paarweise verschie-
dene Punkte in einem zweidimensionalen Vektorraum V . Für
1<=i <= j<=  4 sei Lij die Gerade durch ai und aj .
Zeige, dass die folgenden Aussagen Äaquivalent sind:
(1) Die Geraden L12 und L34 sowie die Geraden L14 und L23
sind parallel.
(2) a2 + a4 = a1 + a3 .

Hallo,

Graphisch ist es kein Problem dies darzustellen.
Generell, behandeln wir Gerade das Thema Affine Geometrie.

Durch Parallelität, weiß ich dass jeweils

a1, a4
a1, a2
a3, a2
a3, a4 kollinear sind. (weiß aber nicht ob dies nützlich ist)

Kann ich die Geraden als affinen Unterraum ansehen? Dann könnte ich sie auch so beschreiben.
a1+(a4-a1)
a1+(a2-a1)
a3+(a2-a3)
a3+(a4-a3) (komme damit aber auch nicht mehr weiter)

Vielleicht könnte mir jemand helfen und mit einen Ansatz zeigen bzw. einen Tipp wie ich den Beweis angehen kann.

mfg michael

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis: Summe kollin. Punkte: Antwort
Status: (Antwort) fertig Status 
Datum: 11:46 Mi 16.04.2008
Autor: generation...x

Die Hin-Richtung der Äquivalenz sollte nicht zu schwer sein: Wenn du dir dir Voraussetzungen ansiehst, wirst du feststellen, dass damit genau ein Parallelogramm beschrieben wird. Du kannst sogar o.B.d.A. davon ausgehen, dass z.B. [mm] a_1 [/mm] im Nullpunkt liegt, da ja [mm]a_i = a_1 + (a_i - a_1)[/mm], so dass das erfüllt ist, wenn man überall [mm] a_1 [/mm] abzieht.

Die Rück-Richtung ist aber auch nicht schwer. Hier ist zu beachten, dass 2 Geraden parallel sind, wenn die sie erzeugenden Richtungsvektoren linear abhängig sind (hier sind sie sogar gleich, einfach die gegebene Gleichung entsprechend umformen).

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]