Beweis Linearer Abhängigkeit < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:46 So 04.12.2005 | Autor: | onk1 |
Hallo allerseits!!!
Folgende Aufgabe stammt für mich einmal wieder aus der Kaste "Aufgaben, die die Welt leider noch braucht". (zumindest die mathematiker welt :-/ )
Sei V ein K-Vektorraum, und seien [mm] v_{1},...,v_{n} [/mm] in V gegeben, so dass das Tupel [mm] (v_{1},...,n_{n}) [/mm] linear unabhängig ist. Seien [mm] \lambda_{1},...,\lambda_{n} \el [/mm] K, und sei v := [mm] \summe_{j=1}^{n} \lambda_{j} v_{j}. [/mm] Beweisen Sie:
das Tupel [mm] (v_{1} [/mm] - v , ... , [mm] v_{n} [/mm] - v) ist genau dann linear abhängig, wenn [mm] \summe_{j=1}^{n} \lambda_{j} [/mm] = 1 gilt.
wäre wahrlich großartig, wenn mir mal jemand auf die sprünge helfen könnte :-/
anderweitig hab ich die frage selbstverständlich nicht veröffentlicht =)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:08 So 04.12.2005 | Autor: | SEcki |
> Hallo allerseits!!!
> Folgende Aufgabe stammt für mich einmal wieder aus der
> Kaste "Aufgaben, die die Welt leider noch braucht".
> (zumindest die mathematiker welt :-/ )
Hmm, sag mal, wie soll ich denn diese Einleitung verstehen? Dir macht Mathe schon Spaß, oder? (Höhrt sich nämlich eher sehr gegenteilig an)
> Sei V ein K-Vektorraum, und seien [mm]v_{1},...,v_{n}[/mm] in V
> gegeben, so dass das Tupel [mm](v_{1},...,n_{n})[/mm] linear
> unabhängig ist. Seien [mm]\lambda_{1},...,\lambda_{n} \el[/mm] K,
> und sei v := [mm]\summe_{j=1}^{n} \lambda_{j} v_{j}.[/mm] Beweisen
> Sie:
> das Tupel [mm](v_{1}[/mm] - v , ... , [mm]v_{n}[/mm] - v) ist genau dann
> linear abhängig, wenn [mm]\summe_{j=1}^{n} \lambda_{j}[/mm] = 1
> gilt.
Da muss man also zwei Richtungen beweisen, und ich gebe mal Tips (aber sowas kann man wohl auf viele Weisen lösen.):
Erstens: man köntne das mit Induktion über die anzahl der [m]v_i[/m] lösen.
Zweitens: direkt. Von rechts nach links: da bietet sich eine nicht triviale Kombination der [mm](v_{1} - v , ... , v_{n}- v) [/mm] gerade zu an, da solltest du nochmal nachdenken. (Also [m]\mu_i[/m], nicht alle0, mit [m]\sum_i \mu_i(v_{i} - v) = 0[/m])
Links nach rechts: fand ich etwas kniffliger, aber setze mal an: [m]\sum_i \mu_i(v_{i} - v) = 0[/m]. Dann setze doch mal die Definition von v ein und ordne die Summe so um, dass jeweils nur noch [m]v_i[/m] mit Koeffizienten davor stehen bleiben; ich erhalte als Koeffizientzu diesen [m]\mu_i-\lambda_i(\sum_k \mu_k)[/m]. Was folgt denn nun aus der linearen Unabhängigkeit der [m]v_i[/m]? Stelle das um und summiere auf.
SEcki
|
|
|
|