www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Beweis Formel für Determinante
Beweis Formel für Determinante < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Formel für Determinante: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:43 Di 06.01.2015
Autor: mathenoob3000

Aufgabe
Es sei B = [mm] (b_{ij}) \in [/mm] M(n x n, K) mit [mm] b_{ij} [/mm] = b [mm] \in [/mm] K für alle i,j = 1, ..., n
und A := B + [mm] aE_n [/mm] mit a [mm] \in [/mm] K. Zeigen Sie:
det(A) = [mm] a^{n-1}(a+nb) [/mm]

Hi
leider habe ich gerade weder meine Vorlesungsunterlagen noch mein LinA Buch zur Verfügung, kann mir jemand mit dieser Aufgabe helfen?
Komme ich da mit der Leibnizformel weiter? Oder gibt es irgendeine Determinantenrechenregel die mir hilft?

lg

        
Bezug
Beweis Formel für Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 22:52 Di 06.01.2015
Autor: andyv

Hallo,

zunächst kannst du feststellen, dass die Determinante von A gleich der Determinante einer Matrix [mm] $C=(c_{ij})$ [/mm] ist, die ich wie folgt definiere:

1. Die erste Spalte von C ist mit der ersten Zeile von A identisch
2. [mm] $c_{i1}=-a$ [/mm] für [mm] $2\le [/mm] i [mm] \le [/mm] n$
3. [mm] $c_{ii}=a$ [/mm] für [mm] $2\le [/mm] i [mm] \le [/mm] n$
4. [mm] $c_{ij}=0, [/mm] else.

Die Determinante von C kann man z. B. mit der Leibnizformel leicht berechnen, schließlich überleben nur n der n! Summanden. Diese stammen von den Permutationen [mm] $\pi_j$, $1\le [/mm] j [mm] \le [/mm] n$, mit [mm] $\pi_j(i)=i$, [/mm] falls $1 [mm] \neq [/mm] i [mm] \neq [/mm] j$, [mm] $\pi_j(1)=j$, $\pi_j(j)=1$. [/mm]

Liebe Grüße

Bezug
                
Bezug
Beweis Formel für Determinante: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:06 Mi 07.01.2015
Autor: mathenoob3000

Wie bist du auf die Matrix C gekommen? Durch ausprobieren? Ich hab das jetzt mal an einem Beispiel durchgerechnet und es kommt schon das richtige raus, aber ich würde gerne verstehen wie du auf die Matrix C gekommen bist? Wahrscheinlich so wie fred es unten beschrieben hat? Dann Frage ich mich allerdings wie man dann da drauf kommt :)

lg

Bezug
                        
Bezug
Beweis Formel für Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 20:13 Mi 07.01.2015
Autor: andyv

Habe die erste Zeile gelassen; die anderen Zeilen erhält man durch Subtraktion der erste Zeile, mit anderen Worten: Ich habe genau das gemacht, was Fred unter 1. stehen hat.

Wie man darauf kommt? Die Zeilen sind "fast" gleich, dann ist es klar, dass Subtraktion viele 0 Einträge produziert.

Liebe Grüße

Bezug
        
Bezug
Beweis Formel für Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 10:18 Mi 07.01.2015
Autor: fred97

1. Subtrahiere die 1. Zeile von jeder anderen Zeile.

2. Addiere die Spalten 2 bis n zur ersten Spalte.

Das Resultat ist eine obere Dreiecksmatrix.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]