www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Bestimmung lokaler Extrema
Bestimmung lokaler Extrema < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung lokaler Extrema: Stimmt das?
Status: (Frage) beantwortet Status 
Datum: 14:13 So 21.05.2006
Autor: Rodo

Aufgabe
die Aufgabe lautete:

[mm] z=(x^2+y^2)*e^-x [/mm]

ich habe die partiellen Ableitungen 1. und 2. Ordnung gebildet:

z von x= [mm] 2*x*e^-x+(x^2+y^2)*(-1)*e^-x [/mm]

z von xx= [mm] 2*e^-x+(-x^2-y^2)*(-1)*e^-x [/mm]

z von y= 2y*e^-x

z  von yy= 2*e^-x

Stimmen die Lösungen?

Gruss Rodo


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bestimmung lokaler Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 14:32 So 21.05.2006
Autor: Alex_Pritzl

Hi!

Das gehört doch noch zu folgendem Thread oder?
https://www.vorhilfe.de/read?t=152899
Schreibe deine Ableitungen bitte da rein. ;)

Gruß
Alex

Bezug
        
Bezug
Bestimmung lokaler Extrema: bestimmung lokaler extrema
Status: (Frage) überfällig Status 
Datum: 15:22 So 21.05.2006
Autor: Rodo

Aufgabe 1
ja die Aufgabe ist die gleiche wie vorhin.
Ich kann das nicht, dass ich  die Lösungen ins gleiche Thread schreiben kann

Aufgabe 2
die Aufgabe lautete:

[mm] z=(x^2+y^2)*e^-x [/mm]

ich habe die partiellen Ableitungen 1. und 2. Ordnung gebildet:

z von x= [mm] 2*x*e^-x+(x^2+y^2)*(-1)*e^-x [/mm]

z von xx= [mm] 2*e^-x+(-x^2-y^2)*(-1)*e^-x [/mm]

z von y= 2y*e^-x

z  von yy= 2*e^-x

Stimmen die Lösungen?

Gruss Rodo


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Bezug
                
Bezug
Bestimmung lokaler Extrema: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Di 23.05.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Bestimmung lokaler Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 15:39 So 21.05.2006
Autor: Alex_Pritzl

Warum kannst du das nicht?

Also:
[mm] \bruch{\partial z}{\partial x} [/mm] ist richtig. Ein bisschen Kosemtik wäre vielleicht nicht schlecht ;)

[mm] \bruch{\partial^2 z}{\partial x^2} [/mm] ist soweit wie ich das sehe, falsch. Rechne es bitte nochmals nach.

[mm] \bruch{\partial^2 z}{\partial y} [/mm] ist richtig. :)

[mm] \bruch{\partial^2 z}{\partial y^2} [/mm] ist auch richtig. :)

Gruß
Alex

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]